精英家教网 > 高中数学 > 题目详情

【题目】如图,已知直线l:x+ y﹣c=0(c>0)为公海与领海的分界线,一艘巡逻艇在O处发现了北偏东60°海面上A处有一艘走私船,走私船正向停泊在公海上接应的走私海轮B航行,以使上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若O与公海的最近距离20海里,要保证在领海内捕获走私船(即不能截获走私船的区域与公海不想交).则O,A之间的最远距离是多少海里?

【答案】
(1)解:由题意知点A(3 ,3),设走私船能被截获的点为P(x,y),

则|OP|=2|AP|,

=2 ,整理得:(x﹣4 2+(y﹣4)2=16.

∴走私船能被截获的点的轨迹是以(4 ,4)为圆心,以4为半径的圆


(2)解:由题意得 =20,即c=40.∴直线l的方程为x+ y﹣40=0.

设|OA|=t,则A( t, t)(t>0),

设走私船能被截获的点为P(x,y),则|OP|=2|AP|,

=2

整理得:(x﹣ t)2+(y﹣ t)2=

∴走私船能被截获的点的轨迹是以C( t, )为圆心,以 为半径的圆.

若保证在领海内捕获走私船,则圆心C到直线l的距离d≥

t,

解得:t≤ =15( ﹣1),

∴O,A之间的最远距离是15( ﹣1)海里


【解析】(1)设截获点为P(x,y),根据|OP|=2|AP|列方程化简即可;(2)设|OA|=t,求出截获点轨迹方程,根据直线与圆不相交列不等式得出t的范围即可得出|OA|的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题的叙述:
①若p:x>0,x2﹣x+1>0,则¬p:x0≤0,x02﹣x0+1≤0;
②三角形三边的比是3:5:7,则最大内角为 π;
③若 = ,则 =
④ac2<bc2是a<b的充分不必要条件,
其中真命题的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ﹣ )=
(1)求圆O和直线l的直角坐标方程;
(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0, ),其部分图象如图所示. (I)求f(x)的解析式;
(II)求函数 在区间 上的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,θ∈[0,2π)上一点P(x,y)到定点M(a,0),(a>0)的最小距离为 ,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex(3x﹣1)﹣ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范
围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.

(Ⅰ)写出直线l和曲线C的普通方程;
(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 在某区间[a,b]上的值域为[ta,tb],则t的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).
(1)判断此函数的奇偶性,并说明理由;
(2)判断此函数在[ ,+∞)的单调性,并用单调性的定义证明你的结论;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.

查看答案和解析>>

同步练习册答案