精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

【答案】(1);(2)证明见解析,

【解析】

1)由题意,又,由此可求出的值,从而求得椭圆的方程.2)椭圆方程化为.PQ的方程为,代入椭圆方程得:.)设PQ的中点为,求出,只要,即证得OT平分线段PQ.)可用表示出PQTF可得:化简得:.再根据取等号的条件,可得T的坐标.

1,又.

2)椭圆方程化为.

)设PQ的方程为,代入椭圆方程得:.

PQ的中点为,则

TF的方程为,则

所以,即OTPQ的中点,即OT平分线段PQ.

,又,所以

.

时取等号,此时T的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求曲线C的极坐标方程和直线l的直角坐标方程;

2)若射线与曲线C交于点A(不同于极点O,与直线l交于点B,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某1 h内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125

1)求甲、乙、丙每台机器在这1 h内需要照顾的概率分别是多少?

2)计算这1 h内至少有一台机器需要照顾的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是一个首项为2,公比为qq1)的等比数列,且3a12a2a3成等差数列.

1)求{an}的通项公式;

2)已知数列{bn}的前n项和为Snb1=1,且1n2),求数列{anbn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明:

1

2

3)设,证明:

413的倍数

5,证明能被整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.

1)求函数的解析式;

2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由.

3)求实数a与正整数n,使得内恰有2013个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四位同学参加三项不同的竞赛.

1)每位同学必须参加一项,有几种不同结果?

2)每项竞赛只有且必须有一位同学参加,有几种不同结果?

3)每位同学最多参加一项,且每项竞赛只许有一位同学参加,有几种不同结果?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ADBC是四面体ABCD中互相垂直的棱,BC=2. AD=2c,且AB+BD=AC+CD=2a,其中ac为常数,则四面体ABCD的体积的最大值是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行了全体学生的一分钟跳绳比赛,为了了解学生的体质,随机抽取了100名学生,其跳绳个数的频数分布表如下:

一分钟跳绳个数

频数

6

12

18

30

16

10

8

1)若将抽取的100名学生一分钟跳绳个数作为一个样本,请将这100名学生一分钟跳绳个数的频率分布直方图补充完整(只画图,不需要写出计算过程);

2)若该校共有3000名学生,所有学生的一分钟跳绳个数X近似服从正态分布,其中为样本平均数的估计值(同一组中的数据用该组区间的中点值为代表).利用所得正态分布模型,解决以下问题:

①估计该校一分钟跳绳个数超过165个的人数(结果四舍五入到整数);

②若在该校所有学生中任意抽取4人,设一分钟跳绳个数超过180个的人数为,求随机变量的分布列、期望与方差./span>

附:若随机变量Z服从正态分布,则.

查看答案和解析>>

同步练习册答案