精英家教网 > 高中数学 > 题目详情
5.如图,在直三棱柱ABC-A1B1C1中,AC=BC,F为A1B1的中点.求证:
(1)B1C∥平面FAC1
(2)平面FAC1⊥平面ABB1A1

分析 (1)如图所示取AB的中点E,连接CE,EB1,可得面B1CE∥平面FAC1,即B1C∥平面FAC1
(2)只需证明C1F⊥面AA1C1B1B,即可得平面FAC1⊥平面ABB1A1

解答 解:(1)证明:如图所示取AB的中点E,连接CE,EB1
∵F为A1B1的中点,∴C1F∥CE,AF∥B1E,且C1F∩AF=F,CE∩B1E=E,
∴面B1CE∥平面FAC1,∵B1C?B1CE,
∴B1C∥平面FAC1

(2)证明:直三棱柱ABC-A1B1C1中,A1A⊥面A1C1B1,∵C1F?面A1C1B1,∴A1A⊥C1F,
∵AC=BC,F为A1B1的中点,∴A1B1⊥C1F,且AA1∩A1B1,∴C1F⊥面AA1C1B1B,
C1F?面A1C1B1,∴平面FAC1⊥平面ABB1A1

点评 本题考查了线面平行、面面垂直的判定,关键是空间位置关系的判定与性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,“A<30°”是“$sinA<\frac{1}{2}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数字1,2,3,…,n(n≥2)的任意一个排列记作(a1,a2,…,an),设Sn为所有这样的排列构成的集合.集合An={(a1,a2,…,an)∈Sn|任意整数i,j,1≤i<j≤n,都有ai+i≤aj-j};集合Bn={(a1,a2,…,an}∈Sn|任意整数i,j,1≤i<n,都有ai+i≤aj+j}.
(Ⅰ)用列举法表示集合A3,B3
(Ⅱ)求集合An∩Bn的元素个数;
(Ⅲ)记集合Bn的元素个数为bn.证明:数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点是F1,F2,点P($\sqrt{2}$,1)在椭圆C上,且|PF1|+|PF2|=4
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P关于x轴的对称点为Q,M是椭圆C上一点,直线MP和MQ与x轴分别相交于点E,F,O为原点.证明:|OE|•|OF|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过点A(0,2)且与圆(x+3)2+(y+3)2=18切于原点的圆的方程是(x-1)2+(y-1)2 =2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2},x>1}\\{\frac{1}{{2}^{x-1}},x≤1}\end{array}\right.$,则f(f($\sqrt{2}$))等于(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面向量$\overrightarrow{a}$=(-1,2)与$\overrightarrow{b}$=(3k-1,1)互相垂直,则k的值为(  )
A.$\frac{1}{6}$B.1C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且过点F的直线y=2x-4与此双曲线只有一个交点,则双曲线的方程为$\frac{5{x}^{2}}{4}$-$\frac{5{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线 过点(1,1)且与两坐标轴所围成的三角形的面积为2,则这样的直线 有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

同步练习册答案