精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,判断函数的单调性;

2)若函数处取得极小值,求实数a的取值范围.

【答案】(1)函数在区间单调递减(2)

【解析】

1)当时,求得函数的导数,构造函数,利用导数求得的单调性与最值,进而得出的符号,即可求解函数的单调性;

2)求得函数导数,构造新函数,求得的导数,分四种情况讨论,求得的单调性与最值,得出单调性,即可求解的极值,进而得到的范围.

1)当时,,定义域为

,设,则

时,,当时,

所以函数单调递增,在单调递减,

的最大值为,所以当时,,即

所以函数在区间单调递减

2)由已知得:,则

,则

①若时,则当单调递增

且当时,,即

时,,即

,所以函数处取得极小值,满足题意.

②若时,则,当时,,故函数区间单调递增,

且当

,即

,所以函数处取得极小值,满足题意.

③若时,则,由(1)知函数在区间单调递减,

在区间单调递减,不满足题意.

④若时,则,当,故函数单调递减

且当时,,即

时,,即,又

所以函数处取得极大值,不满足题意.

综上,实数a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面的中点..

(1)求证:平面平面

(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直线xx1xx2yf(x)图象的任意两条对称轴,且|x1x2|的最小值为 .

(Ⅰ)求f(x)的表达式;

(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数yg(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求函数处的切线方程;

(2)若函数存在两个极值点,求的取值范围;

(3)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.

)求证:以线段为直径的圆与轴相切;

)若,,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表为年至年某百货零售企业的线下销售额(单位:万元),其中年份代码年份

年份代码

线下销售额

(1)已知具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;

(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的准线轴交于椭圆的右焦点为左焦点,椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长于点上一动点,且在之间移动.

(1)当取最小值时,求的方程;

(2)若的边长恰好是三个连接的自然数,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的平底型函数.

)判断函数是否为R上的平底型函数? 并说明理由;

)设是()中的平底型函数,k为非零常数,若不等式对一切R恒成立,求实数的取值范围;

)若函数是区间上的平底型函数,求的值.

.

查看答案和解析>>

同步练习册答案