精英家教网 > 高中数学 > 题目详情
1.对于任意的$m∈[\frac{1}{2},3]$,不等式t2+mt>2m+4恒成立,则实数t的取值范围是(-∞,-5)∪(2,+∞).

分析 由题意可得m(t-2)+t2-4>0,构造函数f(m)=m(t-2)+t2-4,m∈[$\frac{1}{2}$,3],由单调性可得f($\frac{1}{2}$)>0,且f(3)>0,由二次不等式的解法即可得到所求范围.

解答 解:对于任意的$m∈[\frac{1}{2},3]$,不等式t2+mt>2m+4恒成立,
即为m(t-2)+t2-4>0,构造函数f(m)=m(t-2)+t2-4,m∈[$\frac{1}{2}$,3],
即有f($\frac{1}{2}$)>0,且f(3)>0,
即为$\frac{1}{2}$(t-2)+t2-4>0,且3(t-2)+t2-4>0,
即有t>2或t<-$\frac{5}{2}$且t>2或t<-5,
解得t>2或t<-5.
故答案为:(-∞,-5)∪(2,+∞).

点评 本题考查不等式的恒成立问题的解法,注意构造函数运用单调性解决,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若函数$f(x)=\frac{x}{{({2x+1})({2x-a})}}$为奇函数,则a=(  )
A.1B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的离心率为$\frac{1}{2}$,则m=(  )
A.$\frac{9}{4}$B.4C.$\frac{9}{4}$或4D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若f(x)为偶函数,当x>0时,f(x)=-x2+x,求:当x<0时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面是一程序,该程序的运行结果是(  )
A.1,2B.1,1C.2,1D.2,2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{1}{ln(x+1)}$的定义域为(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|log5(ax+1)<1}(a≠0),B={x|2x2-3x-2<0}.
(1)求集合B;
(2)求证:A=B的充要条件为a=2;
(3)若命题p:x∈A,命题q:x∈B且p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.圆经过P(-1,1)、Q(3,-1)两点,并且在x轴上截得的弦长等于6,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知两个具有线性相关关系的变量x,y的测量数据如下:
x1236
y2356
通过最小二乘法求其线性回归方程,并预报当变量x为14时,变量y的值.
( 注:线性回归方程y=bx+a,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$)

查看答案和解析>>

同步练习册答案