精英家教网 > 高中数学 > 题目详情

【题目】如图,公园有一块边长为2的等边ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,DAB上,EAC.

1)设ADxx≥1),EDy,求用x表示y的函数关系式;

2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

【答案】1y1≤x≤2);(2证明见解析

【解析】试题分析:()先根据三角形面积求出AE,即,再根据余弦定理,最后根据边长限制条件确定定义域: )由基本不等式可得当且仅当取最小值,由对勾函数值,当且仅当取最大值.

试题解析:(1)在中,

代入

2)如果是水管

当且仅当,即“=”成立,故,且.

如果是参观线路,记

可知函数在上递减,在上递增,

.

中线或中线时, 最长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1
(Ⅱ)若CD= a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数)
(1)以原点O为极点,以x轴正半轴为极轴(与直角坐标系xOy取相同的长度单位)建立极坐标系,若点P的极坐标为(4, ),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,利用曲线C的参数方程求Q到直线l的距离的最大值与最小值的差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=6cos2 + sinωx﹣3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形.

(1)求ω的值;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),离心率为 ,左准线方程是x=﹣2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.

(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两所学校全体高三年级学生在该地区八校联考中的数学成绩情况,从两校各随机抽取60名学生,将所得样本作出频数分布统计表如下: 甲校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

2

5

9

10

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

14

10

6

4

乙校:

分组

[70,80)

[80,90)

[90,100)

[100,110)

频数

2

4

8

16

分组

[110,120)

[120,130)

[130,140)

[140,150]

频数

15

6

6

3

以抽样所得样本数据估计总体
(1)比较甲、乙两校学生的数学平均成绩的高低;
(2)若规定数学成绩不低于120分为优秀,从甲、乙两校全体高三学生中各随机抽取2人,其中数学成绩为优秀的共X人,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案