精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2-x(x∈R,a、b是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(I)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与g(x)=有两个不同的交点,求实数m的取值范围.

(I)  (Ⅱ) 0≤m<

解析试题分析:解:(1),依题意,,即
解得,经检验符合题意。∴ 
(2) 曲线y=f(x)与g(x)两个不同的交点,
在[-2,0]有两个不同的实数解 
设φ(x)= ,则, 
,得x= 4或x= -1,∵x∈[-2,0],
∴当x(-2,-1)时,,于是φ(x)在[-2,-1]上递增;
当x(-1,0)时,,于是φ(x)在[-1,0]上递减.   
依题意有  
解得0≤m< 
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,试讨论此函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,
⑴求导数
⑵若,求在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=,其中a≠0.
(1)若对一切x∈R,≥1恒成立,求a的取值集合.
(2)在函数的图像上取定两点,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数满足,且在定义域内恒成立,求实数的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数 
(1)探索函数的单调性;
(2)是否存在实数,使函数为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上单调递增,在区间[-2,2]上单调递减.
(1)求的解析式;
(2)设,若对任意的1x­2不等式恒成立,求实数m的最小值。

查看答案和解析>>

同步练习册答案