精英家教网 > 高中数学 > 题目详情
8.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.
(Ⅰ)求这40件样本该项质量指标的平均数$\overline{x}$;
(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X,求X的分布列及数学期望.

分析 (Ⅰ)根据频率分布直方图,计算数据的平均值是各小矩形底边中点与对应的频率乘积的和;
(Ⅱ)首先分别求质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,然后求出X=0、1、2时的概率,进而求出X的分布列及数学期望即可.

解答 解:(Ⅰ)由频率分布直方图可知,这40件样本该项质量指标的平均数$\overline{x}$=162.5×0.05+167.5×0.125+172.5×0.35+177.5×0.325+182.5×0.1+187.5×0.05=174.75cm;
(Ⅱ)由频率分布直方图可知,质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,∴X的可能值为:0,1,2;
P(X=0)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$,P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,P(X=2)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$,
所以分布列为:

 X 012
P$\frac{2}{5}$$\frac{8}{15}$     $\frac{1}{15}$     
数学期望E(X)=0×$\frac{2}{5}$+1×$\frac{8}{15}$+2×$\frac{1}{15}$=$\frac{2}{3}$.

点评 本题主要考查了频率分布直方图的应用问题,考查了分布列以及数学期望,解答此题的关键是要熟练掌握利用频率分布直方图,计算数据的平均值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\left\{\begin{array}{l}1-x,x≤0\\{log_2}x,x>0\end{array}$,且f(a)=2,则a=-1或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合P={-3,0,2,4],集合Q={x|-1<x<3},则P∩Q={0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x-$\sqrt{3}$sin2x的图象,则φ的一个可能取值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$-$\frac{{x}^{2016}}{2016}$在区间[-2,2]上的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若二次函数f(x)=x2+bx+c满足f(0)=f(-2),且f(1)=3.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.实数x、y满足$\left\{\begin{array}{l}{y≤x+1}\\{y≥-x+1}\\{x≤3}\end{array}\right.$,这Z=3x+4y,则Z的取值范围是(  )
A.[1,25]B.[4,25]C.[1,4]D.[5,24]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1(-c,0),F2(c,0)(c>0),离心率e=$\frac{\sqrt{3}}{2}$,椭圆上右顶点到右焦点的距离为2-$\sqrt{3}$,则椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若偶函数f(x)在[1,2]上为增函数,且有最小值0,则它在[-2,-1]上(  )
A.是减函数,有最小值0B.是增函数,有最小值0
C.是减函数,有最大值0D.是增函数,有最大值0

查看答案和解析>>

同步练习册答案