【题目】已知椭圆C:的左、右焦点分别是,点,若的内切圆的半径与外接圆的半径的比是.
(1)求椭圆C的方程;
(2)点M是椭圆C的左顶点,P、Q是椭圆上异于左、右顶点的两点,设直线MP、MQ的斜率分别为、,若,试问直线PQ是否过定点?若过定点,求该定点坐标;若不过定点,请说明理由.
【答案】(1);(2)是,.
【解析】
(1)设内切圆和外接圆的半径分别是,则.利用三角形的面积公式求得与的关系式,利用正弦定理求得与的关系式,由此求得两者直线的关系式,进而求得的值,以及椭圆的方程.
(2)当直线的斜率不存在时,设出的坐标,利用列方程,结合在椭圆上,求得的坐标,由此求得直线的方程.当直线斜率存在时,设出直线的方程,代入椭圆方程,化简后写出韦达定理和判别式,利用列方程,求得的关系式,由此判断出直线所过定点坐标.
(1)由已知是椭圆的顶点,又分别是椭圆的左右焦点,则有,且.设的内切圆半径与外接圆的半径分别是和,则.由,得,得.
设,在中,,在中,由正弦定理得,即,所以.所以,即,即,化简得,解得(舍去),所以.所以所求椭圆的方程是.
(2)由已知,设,
若直线PQ的斜率不存在,不妨设,
由得,即,
又,
即,得,解得舍或,
或,此时直线PQ的方程为,
若直线PQ的斜率存在,设直线PQ的方程为,
由,得,
,
由,得,
又,即,
即,即,
整理得,
,
整理得,解得,或,
当时,直线PQ:,即过定点,不符合题意,
当时,直线PQ:,即过定点.
综上,直线PQ过定点.
科目:高中数学 来源: 题型:
【题目】第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.它是中国政府坚定支持贸易自由化和经济全球化,主动向世界开放市场的重要举措,有利于促进世界各国加强经贸交流合作,促进全球贸易和世界经济增长,推动开放世界经济发展.某机构为了解人们对“进博会”的关注度是否与性别有关,随机抽取了100名不同性别的人员(男、女各50名)进行问卷调查,并得到如下列联表:
男性 | 女性 | 合计 | |
关注度极高 | 35 | 14 | 49 |
关注度一般 | 15 | 36 | 51 |
合计 | 50 | 50 | 100 |
(1)根据列联表,能否有99.9%的把握认为对“进博会”的关注度与性别有关;
(2)若从关注度极高的被调查者中按男女分层抽样的方法抽取7人了解他们从事的职业情况,再从7人中任意选取2人谈谈关注“进博会”的原因,求这2人中至少有一名女性的概率.
附:.
参考数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否为有界函数,若是,请说明理由,并写出的所有上界的集合;若不是,也请说明理由;
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年是中国成立70周年,也是全面建成小康社会的关键之年.为了迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.下面的茎叶图是参赛两组选手答题得分情况,则下列说法正确的是( )
A.甲组选手得分的平均数小于乙组选手的平均数B.甲组选手得分的中位数大于乙组选手的中位数
C.甲组选手得分的中位数等于乙组选手的中位数D.甲组选手得分的方差大于乙组选手的的方差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,C、D两点的坐标为,曲线上的动点P满足.又曲线上的点A、B满足.
(1)求曲线的方程;
(2)若点A在第一象限,且,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.
(1)求证:直线AC垂直于直线SD;
(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com