精英家教网 > 高中数学 > 题目详情
14.9颗珍珠中有一颗是假的,且真珍珠一样重,假珍珠比真珍珠要轻.如果用一架天平至少要称(  )次,就一定可以找出这颗假珍珠.
A.5B.4C.2D.6

分析 将9颗珍珠分三堆,将其中两堆分别放置天平两端,如果平衡,则假珍珠在剩下一堆里;如果不平衡则假珍珠在轻的一端;再把含假珍珠的一堆中取出两颗珍珠放在天平两端,同上可找出假珍珠,故只需称两次就能找出假珍珠.

解答 解析:这是工序最优化设计问题,将9颗珍珠分三堆,将其中两堆分别放置天平两端,如果平衡,则假珍珠在剩下一堆里;如果不平衡则假珍珠在轻的一端;再把含假珍珠的一堆中取出两颗珍珠放在天平两端,同上将3颗珍珠中两颗分别放置天平两端,如果平衡,则假珍珠是下一颗里;如果不平衡则假珍珠在轻的一端;可找出假珍珠,故只需称两次就能找出假珍珠.
故选:C.

点评 本题考查了推理与论证,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且过点$(-\sqrt{3},2\sqrt{3})$的双曲线的标准方程是$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{\frac{15}{4}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设动点P到定点F(0,$\frac{1}{4}$)的距离与它到直线y=-$\frac{1}{4}$的距离相等,
(1)求动点P的轨迹C的方程;
(2)过(-2,0)的直线l与轨迹C交于M,N两点,又过M,N作轨迹C的切线l1,l2,当l1⊥l2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.第4届世界杯于1950年在巴西举行,此后每4年举行一次,那么将在俄罗斯举行的2018年世界杯是第21届.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心在坐标原点O,右焦点$F(\sqrt{3},0)$,M、N是椭圆C的左、右顶点,D是椭圆C上异于M、N的动点,且△MND面积的最大值为2.
(1)求椭圆C的标准方程;
(2)设直线l与椭圆C相交于A,B两点,直线OA,l,OB的斜率分别为k1,k,k2(其中k>0)△OAB的面积为S,以OA,OB为直径的圆的面积分别为S1,S2,若k1,k,k2恰好构成等比数列,求$\frac{{{S_1}+{S_2}}}{S}$的最小值,并此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,点M在AB1的中点,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(P,Q可以重合),则MP+PQ的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设1<x<2,则$\frac{lnx}{x}$,($\frac{lnx}{x}$)2,$\frac{ln{x}^{2}}{{x}^{2}}$的大小关系是($\frac{lnx}{x}$)2<$\frac{lnx}{x}$<$\frac{ln{x}^{2}}{{x}^{2}}$(用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点P是抛物线y2=4x上动点,F为抛物线的焦点,将向量$\overrightarrow{FP}$绕点F按顺时针方向旋转90°到$\overrightarrow{FQ}$
(Ⅰ)求Q点的轨迹C的普通方程;
(Ⅱ)过F倾斜角等于$\frac{π}{4}$的直线l与曲线C交于A、B两点,求|FA|+|FB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某电商对10000名网购者2015年度消费情况进行统计,其消费频率分布直方图如图,则在这些网购者中,消费金额在[0.5,0.9]内的人数为(  )
A.2000B.4500C.6000D.7500

查看答案和解析>>

同步练习册答案