精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)当a=1时,求数学公式的最小值; 
(2)数学公式对x∈[1,4]恒成立,求实数a的取值范围.

解:令,则g(x)=t2-a2
(1)当a=1时,t≥1,故,因此,当且仅当t=1即x=0时取等号.
所以的最小值是3;
(2)由x∈[1,4]得t∈[1+a,2+a],由整理可得at2-2t-a3>0①或at2+8t-a3<0②.因此①式或②式对于任意的t∈[1+a,2+a]恒成立.显然at2+8t-a3=a(t2-a2)+8t>0,故②式不成立.
令φ(t)=at2-2t-a3,因为△=4+4a4>0,
结合该函数的图象可得?( I)或( II)
结合a>0可知不等式组( I)的解为,不等式组( II)无解.所以
分析:(1)利用换元法,可将求 的最小值转化为利用基本不等式可求最小值;
(2)由x∈[1,4]得t∈[1+a,2+a],由整理可得at2-2t-a3>0①或at2+8t-a3<0②.构造函数φ(t)=at2-2t-a3,因为△=4+4a4>0,结合该函数的图象可求实数a的取值范围.
点评:本题以函数为载体,考查基本不等式的运用,考查学生分析解决问题的能力,关键是换元转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(12分)已知函数

(1)当a=1时,证明函数只有一个零点;

(2)若函数在区间(1,+∞)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数

(1)当a=3时,求fx)的零点;

(2)求函数yf (x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源:2011届湖北省天门市高三模拟考试(一)理科数学 题型:解答题

.(本小题满分14分)
已知函数
(1)当a=1时,求的极小值;
(2)设,x∈[-1,1],求的最大值F(a).

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷D(四)(解析版) 题型:解答题

已知函数
(1)当a=2时,求函数f(x)的单调递减区间;
(2)当a<0,且时,f(x)的值域为[4,6],求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高州市高三上学期16周抽考数学文卷 题型:解答题

(本小题共13分)

已知函数

(1)当a=3时,求f(x)的零点;

(2)求函数y=f (x)在区间[1,2]上的最小值.

 

查看答案和解析>>

同步练习册答案