精英家教网 > 高中数学 > 题目详情
13.实数x,y满足条件$\left\{\begin{array}{l}{x+2y≤8}\\{0≤x≤4}\\{0≤y≤3}\end{array}\right.$,则2x+5y的最大值是19.

分析 作出不等式组对应的平面区域,利用z的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
由z=2x+5y,得y=$-\frac{2}{5}$x+$\frac{z}{5}$表示,
平移直线y=$-\frac{2}{5}$x+$\frac{z}{5}$,当直线y=$-\frac{2}{5}$x+$\frac{z}{5}$经过点B时,直线y=$-\frac{2}{5}$x+$\frac{z}{5}$的截距最大,此时z最大,
由$\left\{\begin{array}{l}{y=3}\\{x+2y=8}\end{array}\right.$,即$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即B(2,3),
此时zmax=2×2+5×3=19.
故答案为:19.

点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知A={x|-2≤x≤4}.B={x|x>a}.
(1)若A∩B≠∅,求实数a的取值范围;
(2)若A∩B≠A,求实数a的取值范围;
(3)若A∩B≠∅,且A∩B≠A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?x∈R,ex>x2”的否定是(  )
A.?x∈R,使得ex≤x2B.?x∈R,使得ex≤x2
C.?x∈R,使得ex>x2D.不存在x∈R,使得ex>x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若100a=5,10b=2,则2a+b等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题:?x∈R,sinx<1的否定是?x∈R,sinx≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i为虚数单位,则$\frac{1+i}{{i}^{3}}$的共轭复数是(  )
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C所对应边分别为a,b,c,已知$\overrightarrow{m}$=(2cos$\frac{C}{2}$,sinC),$\overrightarrow{n}$=(2sinC,cos$\frac{C}{2}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=3b2+c2,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)满足f(1)=2,且对任意x,y∈R都有f(x)=f(x+y)•f(-y),记$\underset{\stackrel{n}{π}}{i=1}$a1=a1a2…an,则$\underset{\stackrel{12}{π}}{i=1}$f(7-i)=64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知ab=a2+b2-3,求:
(1)ab的取值范围;
(2)a2+b2的最大值.

查看答案和解析>>

同步练习册答案