精英家教网 > 高中数学 > 题目详情

如图,在正方形ABCD中,已知AB=2,M为BC的中点,若N为正方形内(含边界)任意一点,则数学公式的取值范围是________.

[0,6]
分析:以A为坐标原点,以AB方向为x轴正方向,在平面内建立合适的坐标系,将向量的数量积用坐标表示,再利用线性规划方法解决问题.求出数量积的范围.
解答:解:以A为坐标原点,以AB方向为x轴正方向,
以AD方向为y轴方向建立坐标系,则 =(2,1)
设N点坐标为(x,y),则 =(x,y),则0≤x≤2,0≤y≤2
令Z==2x+y.
将A,B,C,D四点坐标依次代入得:
ZA=0,ZB=4,ZC=6,ZD=2
故Z=的最大值为6,最小值为0,
的取值范围是[0,6].
故答案为:[0,6].
点评:向量的主要功能就是数形结合,将几何问题转化为代数问题,但关键是建立合适的坐标系,将向量用坐标表示,再将数量积运算转化为方程或函数问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省烟台市莱州一中高三第二次质量检测数学试卷(文科)(解析版) 题型:解答题

如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源:2012年山东省青岛市高考数学二模试卷(文科)(解析版) 题型:解答题

如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

同步练习册答案