精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角最大.

【答案】解:(Ⅰ)取AC的中点Q,连结A1Q,易知AM⊥A1Q,

又PN在平面A1C内的射影为A1Q,所以AM⊥PN.

(Ⅱ)作PD⊥AB于D,连结DN,则∠PND为直

线PN和平面ABC所成的角.易知当ND最短,即ND⊥AB

时, 最大,从而∠PND最大,此时D为AB的中点,P为A1B1的中点.


【解析】(Ⅰ)取AC的中点Q,连结A1Q,易知AM⊥A1Q,可得AM⊥PN.(Ⅱ)作PD⊥AB于D,连结DN,则∠PND为直线PN和平面ABC所成的角.易知当ND最短,即ND⊥AB时,∠PND最大,此时D为AB的中点,P为A1B1的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双曲线 =1(a>0,b>0)上任意一点P可向圆x2+y2=( 2作切线PA,PB,若存在点P使得 =0,则双曲线的离心率的取值范围是(
A.[ ,+∞)
B.(1, ]
C.[
D.(1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式[2tx2﹣(t2﹣1)x+2]lnx≤0对任意x∈(0,+∞)恒成立,则实数t的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个定点 ,动点P满足 .设动点P的轨迹为曲线E,直线 .
(1)求曲线E的轨迹方程;
(2)若l与曲线E交于不同的C,D两点,且 (O为坐标原点),求直线l的斜率;
(3)若 是直线l上的动点,过Q作曲线E的两条切线QM,QN,切点为M,N,探究:直线MN是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知g(x)是各项系数均为整数的多项式,f(x)=2x2﹣x+1,且满足f(g(x))=2x4+4x3+13x2+11x+16,则g(x)的各项系数之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求 的定义域;
(2)判断并证明 的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)=Acos(ωx+φ)(A,ω>0)的图象如图所示,为得到g(x)=﹣Asin(ωx+ )的图象,可以将f(x)的图象(
A.向右平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向左平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在 上的奇函数 满足: ,且在区间 上单调递减,则不等式 的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lx轴上的截距比在y轴上的截距大1且过点(6-2)求直线l的方程.

查看答案和解析>>

同步练习册答案