【题目】如图,在四棱锥中, 平面, ,且, , , 为线段上一点, ,且为的中点.
(Ⅰ)证明: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】△ABC中,角A,B,C的对边分别为a,b,c,且cosC= .
(1)求角B的大小;
(2)若BD为AC边上的中线,cosA= ,BD= ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= ,g(x)= .
(1)当1≤x<2时,求g(x);
(2)当x∈R时,求g(x)的解析式,并画出其图象;
(3)求方程xf[g(x)]=2g[f(x)]的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且.直线与轴、轴分别交于,两点.设直线,的斜率分别为,,证明存在常数使得,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区上年度电价为0.8元/kWh,年用电量为akWh,本年度计划将电价降到0.55 元/kWh至0.75元/kWh之间,而用户期待电价为0.4元/kWh,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元/kWh.(注:收益=实际用电量×(实际电价﹣成本价)),示例:若实际电价为0.6元/kWh,则下调电价后新增加的用电量为 元/kWh)
(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系;
(2)设K=0.2a,当电价最低为多少仍可保证电力部门的收益比上一年至少增长20%?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com