精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,侧面为菱形且, , 分别为的中点, , ,

(Ⅰ)证明:直线∥平面

(Ⅱ)求二面角的余弦值.

【答案】(I)见解析;(II)

【解析】试题分析:(I)取中点,可证 两两互相垂直,建立以为原点, 分别为轴,建立空间直角坐标系,得出各点坐标,可求与平面的法向量,利用两向量垂直可证结论;(II)先求出二面角两半平面的法向量,利用法向量夹角与二面角平面角间关系可得结果. 

试题解析:解法一:∵,且为中点, ,∴

,∴

,∴平面

中点,则,即 两两互相垂直,

为原点, 分别为轴,建立空间直角坐标系如图(4), ∴

(I) ,设平面的法向量为

,取

,∴

平面, ∴直线∥平面

(II) 设平面的法向量为

,取

又由(Ⅰ)知平面的法向量为,设二面角

∵ 二面角为锐角,∴ 二面角的余弦值为

解法二:取中点,则,即,以为原点, 分别为轴,

建立空间直角坐标系如图(5),设点

,即,∴

可得:

,解得

下同解法二.

解法三:(Ⅰ)如图(6),取中点,连接,则有

为平行四边形, ∴

平面 平面,∴ 直线∥平面

(Ⅱ)由各棱长,易得,∴平面

中点,连接,过,连接

如图(8),可证: 平面

证明平面,可得

为所求的二面角的平面角,

中,求得: ,故所求的二面角的余弦值为

解法四:

(Ⅰ)如图(7),取中点,由

平面,∴ 直线∥平面

平面

∴ 直线∥平面

,∴平面∥平面

平面, ∴ 直线∥平面

(Ⅱ)同解法一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱台中,底面为平行四边形, 上的点.且.

(1)求证:

(2)若的中点, 为棱上的点,且与平面所成角的正弦值为,试求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ) 部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)﹣cos2x,求函数g(x)在区间 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)设g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x﹣1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中, R), ,且△BCD是以BC为斜边的直角三角形.求:
(1)λ的值;
(2) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点(a,b)是区域 内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[ ,+∞)上是增函数的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案