精英家教网 > 高中数学 > 题目详情
13.平面上有两个定点A、B,任意放置5个点C1、C2、C3、C4、C5,使其与A、B两点均不重合,如果存在Ci、Cj(i>j,i,j∈{1,2,3,4,5})使不等式|sin∠ACiB-sin∠ACjB|≤$\frac{1}{4}$成立,则称(Ci,Cj))为一个点对,则这样的点对(  )
A.不存在B.至少有1对C.至多有1对D.恰有1对

分析 由题意,sin∠ACiB∈[0,1],i∈{1,2,3,4,5},将[0,1]分成[0,$\frac{1}{4}$],[$\frac{1}{4}$,$\frac{2}{4}$],[$\frac{2}{4}$,$\frac{3}{4}$],[$\frac{3}{4}$,1]四段,则sin∠ACiB(i∈{1,2,3,4,5})中至少有两个值落在同一个小区间内,即可得出结论.

解答 解:由题意,sin∠ACiB∈[0,1],i∈{1,2,3,4,5}
将[0,1]分成[0,$\frac{1}{4}$],[$\frac{1}{4}$,$\frac{2}{4}$],[$\frac{2}{4}$,$\frac{3}{4}$],[$\frac{3}{4}$,1]四段,
则sin∠ACiB(i∈{1,2,3,4,5})中至少有两个值落在同一个小区间内,
∴使不等式|sin∠ACiB-sin∠ACjB|≤$\frac{1}{4}$成立的(Ci,Cj)至少有1对,
故选:B.

点评 本题考查进行简单的合情推理,考查抽屉原理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.曲线y=$\frac{1}{x}$过P(4,$\frac{1}{4}$)的切线方程为(  )
A.x+16y-8=0B.16x+y-8=0C.x-16y+8=0D.x+16y+8=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=$\frac{2cosθ}{si{n}^{2}θ}$
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.观察下列等式1=12,12-22=-3,12-22+32=6,12-22+32-42=-10照此规律,第100个等式12-22+32-42+…-1002=-5050.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点.将△EDA沿AD折到△PDA位置(如图2),连结PC,PB构成一个四棱锥P-ABCD.

(Ⅰ)求证AD⊥PB;
(Ⅱ)若PA⊥平面ABCD.
①求二面角B-PC-D的大小;
②在棱PC上存在点M,满足$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1),使得直线AM与平面PBC所成的角为45°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.[$\sqrt{n}$]表示不超过$\sqrt{n}$的最大整数.若
S1=[$\sqrt{1}$]+[$\sqrt{2}$]+[$\sqrt{3}$]=3,
S2=[$\sqrt{4}$]+[$\sqrt{5}$]+[$\sqrt{6}$]+[$\sqrt{7}$]+[$\sqrt{8}$]=10,
S3=[$\sqrt{9}$]+[$\sqrt{10}$]+[$\sqrt{11}$]+[$\sqrt{12}$]+[$\sqrt{13}$]+[$\sqrt{14}$]+[$\sqrt{15}$]=21,
…,
则Sn=(  )
A.n(n+2)B.n(n+3)C.(n+1)2-1D.n(2n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图三角形数阵中,从第三行起,每行都是1为首项,公比为2的等比数列.求数阵的前n行各项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥-2\\ x-2y≥-2\end{array}\right.$,则z=2x+y的最大值是(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的不等式x2+ax-2<0在区间[1,4]上有解,则实数a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案