精英家教网 > 高中数学 > 题目详情

【题目】锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

【答案】
(1)解:∵acosB+bcosA= csinC,

∴由正弦定理得sinAcosB+cosAsinB= sinCsinC,

则sin(A+B)= sinCsinC,

由sin(A+B)=sinC>0得,sinC=

∵C是锐角,∴cosC= =


(2)解:∵a=6,b=8,cosC=

∴由余弦定理得c2=a2+b2﹣2abcosC

=36+64﹣2×6× =36,

解得c=6


【解析】(1)利用正弦定理和两角和的正弦公式化简已知的等式,由锐角的范围和平方关系求出cosC;(2)根据条件和余弦定理求出边c的长.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:

井号

1

2

3

4

5

6

坐标

钻探深度(

2

4

5

6

8

10

出油量(

40

70

110

90

160

205

(参考公式和计算结果:

(1)号旧井位置线性分布,借助前组数据求得回归直线方程为;求,并估计的预报值;

(2)现准备勘探新井,若通过1,3,5,7号并计算出的 的值( 精确到)相比于(1)中的 ,且,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:

i

1

2

3

4

5

合计

xi(百万元)

1.26

1.44

1.59

1.71

1.82

7.82

wi(百万元)

2.00

2.99

4.02

5.00

6.03

20.04

yi(百万元)

3.20

4.80

6.50

7.50

8.00

30.00

=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi2=0.20, (wi2=10.14

其中
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);

(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).
(1)若 ⊥(2 + ),求| |;
(2)若 <0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一坐标系中,的图象关于轴对称;

是奇函数;

的图象关于成中心对称;

的最大值为

的单调增区间:

以上五个判断正确有____________________写上所有正确判断的序号)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品在天内每克的销售价格()与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量()与时间()之间的函数关系如下表所示:

5

15

20

30

销售量

35

25

20

10

(1)根据提供的图象,写出该商品每克销售的价格()与时间的函数关系式;

(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;

(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.

(注:日销售金额=每克的销售价格×日销售量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

与圆相切,求的方程;

与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点C是圆C的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(-1,0),8(0,3),圆心C在第一象限,线段AB的垂直平分线交圆C 于点D,E,DE =2

(1)求直线DE的方程;

(2)求圆C的方程;

(3)过点(0,4)作圆C的切线,求切线的斜率.

查看答案和解析>>

同步练习册答案