【题目】如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证:EC⊥CD;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3)
【解析】试题分析:(1)要证,只要证平面;而由题设平面平面且,所以平面,结论得证;
(2)过G作GN⊥CE交BE于M,连DM,由题设可证四边形为平行四边形,所以有
从而由直线与平面平行的判定定理,可证AG∥平面BDE;
(3)欲求几何体EG-ABCD的体积,可先将该几何体分成一个四棱锥和三棱锥.
试题解析:
(1)证明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC, 平面BCEG,
EC⊥平面ABCD,3分
又CD平面BCDA, 故 EC⊥CD4分
(2)证明:在平面BCDG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且
MG∥AD,MG=AD, 故四边形ADMG为平行四边形,
AG∥DM6分
∵DM平面BDE,AG平面BDE,AG∥平面BDE8分
(3)解: 10分
12分
科目:高中数学 来源: 题型:
【题目】已知命题;命题:函数在区间上为减函数.
(1)若命题为真命题,求实数的取值范围;
(2)若命题“或”为真命题,且“且”为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: =1的离心率e= ,动点P在椭圆C上,点P到椭圆C的两个焦点的距离之和是4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C1的方程为 =1(m>n>0),椭圆C2的方程为 =λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.已知椭圆C2是椭圆C的3倍相似椭圆.若过椭圆C上动点P的切线l交椭圆C2于A,B两点,O为坐标原点,试证明当切线l变化时|PA|=|PB|并研究△OAB面积的变化情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过吨时,按每吨元收取;当该用户用水量超过吨时,超出部分按每吨元收取.
(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为元,且甲、乙两用户用水量之比为,试求出甲、乙两用户在该收费周期内各自的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是ρ= ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MAMB的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(销售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求关于的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?
相关公式: , .
【答案】(1).(2)投入成本20万元的毛利率更大.
【解析】试题分析:(1)由回归公式,解得线性回归方程为;(2)当时, ,对应的毛利率为,当时, ,对应的毛利率为,故投入成本20万元的毛利率更大。
试题解析:
(1), ,
, ,故关于的线性回归方程为.
(2)当时, ,对应的毛利率为,
当时, ,对应的毛利率为,
故投入成本20万元的毛利率更大.
【题型】解答题
【结束】
21
【题目】如图,在正方体中, 分别是棱的中点, 为棱上一点,且异面直线与所成角的余弦值为.
(1)证明: 为的中点;
(2)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中不正确的序号为____________.
①若函数在上单调递减,则实数的取值范围是;
②函数是偶函数,但不是奇函数;
③已知函数的定义域为,则函数的定义域是;
④若函数在上有最小值-4,(,为非零常数),则函数 在上有最大值6.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com