【题目】已知函数在点处的切线方程为.
(1)求的值;
(2)已知,当时,恒成立,求实数的取值范围;
(3)对于在中的任意一个常数,是否存在正数,使得?请说明理由.
【答案】(1);(2);(3)见解析.
【解析】分析:(1)求出导函数,根据导数的几何意义以及函数在点处的切线方程为,可得,进而可得结果;(2)令,问题转化为恒成立,利用导数研究函数的单调性,可得,∴,从而可得结果;(3)对于,假设存在正数,问题转化为,要存在正数使得上式成立,只需上式最小值小于0即可,利用导数研究函数的单调性,求出函数的极值与最值,可得存在正数,使得成立.
详解:(1)函数的定义域为,
∵,∴,
故函数在点处的切线方程为即
又已知函数在点处的切线方程为,
∴
∴
(2)由(1)可知,,
∵,∴,
即,令,
则,
∵,
∴,
∴,∴在为增函数
∴,
∴,∴
(3)对于,假设存在正数使得成立,
即,
∴
要存在正数使得上式成立,只需上式最小值小于0即可
令,则,
令,得;令,得;
∴为函数的极小值点,亦即最小值点,即函数的最小值为
令,则
∴在上是增函数,∴,
∴
∴存在正数,使得成立.
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,且离心率为.
(1)求椭圆方程;
(2)斜率为的直线过点F,且与椭圆交于两点,P为直线上的一点,
若为等边三角形,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)
(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.
(Ⅲ)证明:直线DF平面BEG
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四种说法正确的是( )
①若和都是定义在上的函数,则“与同是奇函数”是“是偶函数”的充要条件
②命题 “”的否定是“ ≤0”
③命题“若x=2,则”的逆命题是“若,则x=2”
④命题:在中,若,则;
命题:在第一象限是增函数;
则为真命题
A. ①②③④ B. ①③ C. ③④ D. ③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点和点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于不同的两点, ,是否存在实数,使得?若存在,求出实数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com