精英家教网 > 高中数学 > 题目详情
13.某厂在生产某产品的过程中,产量x(吨)与生产能耗y(吨)的对应数据如表所示.根据最小二乘法求得回归直线方程为$\widehat{y}$=0.7x+a.当产量为80吨时,预计需要生产能耗为59.5吨.
x30405060
y25304045

分析 求出x,y的平均数,代入y关于x的线性回归方程,求出a,把x=80代入,能求出当产量为80吨时,预计需要生成的能耗.

解答 解:由题意,$\overline{x}$=45,$\overline{y}$=35,代入$\widehat{y}$=0.7x+a,可得a=3.5,
∴当产量为80吨时,预计需要生成能耗为0.7×80+3.5=59.5,
故答案为:59.5.

点评 本题考查了最小二乘法,考查了线性回归方程,解答的关键是知道回归直线一定经过样本中心点,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则当x∈[-1,1]时,函数f(x)的值域为(  )
A.[-1,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1]C.[-$\frac{\sqrt{2}}{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{{e}^{x}}{e}$-ax2+(2a-1)x-a,其中e是自然对数的底数.
(Ⅰ)若a=0,求曲线f(x)在x=1处的切线方程;
(Ⅱ)若当x≥1时,f(x)≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)对任意n∈N*都成立,数列{an}的前n项和为Sn
(1)若{an}是等差数列,求k的值;
(2)若a=1,k=-$\frac{1}{2}$,求Sn
(3)是否存在实数k,使数列{am}是公比不为1的等比数列,且任意相邻三项am,am+1,am+2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{log_2}(8-x),x≤0\\ f(x-1),x>0\end{array}$则f(3)=(  )
A.3B.2C.log29D.log27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+a(x-1),其中a∈R.
(Ⅰ) 当a=-1时,求证:f(x)≤0;
(Ⅱ) 对任意t≥e,存在x∈(0,+∞),使tlnt+(t-1)[f(x)+a]>0成立,求a的取值范围.
(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过圆锥顶点的平面截去圆锥一部分,所得几何体的三视图如图所示,则原圆推的体积为(  )
A.1B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若z是复数,z=$\frac{1-2i}{1+i}$.则z•$\overline{z}$=(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{5}}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知M(-4,0),N(0,-3),P(x,y)的坐标x,y满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{3x+4y≤12}\end{array}\right.$,则△PMN面积的取值范围是(  )
A.[12,24]B.[12,25]C.[6,12]D.[6,$\frac{25}{2}$]

查看答案和解析>>

同步练习册答案