【题目】已知函数, .
(Ⅰ)求曲线在处的切线方程.
(Ⅱ)求的单调区间.
(Ⅲ)设,其中,证明:函数仅有一个零点.
科目:高中数学 来源: 题型:
【题目】如图,已知为椭圆: 的右焦点, , , 为椭圆的下、上、右三个顶点, 与的面积之比为.
(1)求椭圆的标准方程;
(2)试探究在椭圆上是否存在不同于点, 的一点满足下列条件:点在轴上的投影为, 的中点为,直线交直线于点, 的中点为,且的面积为.若不存在,请说明理由;若存在,求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,是的中点,是等腰三角形,为的中点,为上一点.
(I)若平面,求;
(II)平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是由正整数组成的无穷数列,该数列前项的最大值记为,第项之后各项, , 的最小值记为, .
(I)若为, , , , , , , , ,是一个周期为的数列(即对任意, ),写出, , , 的值.
(II)设是正整数,证明: 的充分必要条件为是公比为的等比数列.
(III)证明:若, ,则的项只能是或者,且有无穷多项为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(),将的图象向左平移个单位长度后得到的图象,且在区间内的最大值为.
(1)求实数的值;
(2)在中,内角, , 的对边分别是, , ,若,且,求的周长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点、是平面上左、右两个不同的定点, ,动点满足:
.
(1)求证:动点的轨迹为椭圆;
(2)抛物线满足:①顶点在椭圆的中心;②焦点与椭圆的右焦点重合.
设抛物线与椭圆的一个交点为.问:是否存在正实数,使得的边长为连续自然数.若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com