分析 (1)由loga3<loga2,可得a<1,再根据logaa-loga3a=1,求得a的值.
(2)先求得-1≤${log}_{\frac{1}{3}}$x≤0,利用二次函数的性质求得它的值域.
解答 解:(1)∵loga3<loga2,∴0<a<1;
又∵y=logax在[a,3a]上为减函数,
∴logaa-loga3a=1,
即loga$\frac{1}{3}$=1,∴a=$\frac{1}{3}$.
(2)∵1≤x≤3,
∴-1≤${log}_{\frac{1}{3}}$x≤0,
∴y=(logax)2+loga$\sqrt{x}$-2=${{(log}_{\frac{1}{3}}x)}^{2}$+$\frac{1}{2}$${log}_{\frac{1}{3}}$x-2,
令${log_{\frac{1}{3}}}x=t$,则t∈[-1,0],
故y=t2+$\frac{1}{2}$t-2=${(t+\frac{1}{4})}^{2}$-$\frac{33}{16}$,
其值域为[-$\frac{33}{16}$,-$\frac{3}{2}$].
点评 本题主要考查对数函数的定义域和值域,二次函数的性质应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | R2越接近1,表示回归效果越差 | B. | R2的值越大,说明残差平方和越小 | ||
C. | R2越接近0,表示回归效果越好 | D. | R2的值越小,说明残差平方和越小 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com