精英家教网 > 高中数学 > 题目详情
若向量
a
b
满足
a
+
b
=(2,-1),
a
=(1,2),则向量
a
b
的夹角等于(  )
A、45°
B、60°
C、120°
D、135°
分析:先设向量
a
b
的夹角为θ,有两向量(
a
+
b
)、
a
的坐标,可得
b
的坐标,可得
b
的模,由数量积的意义,可得cosθ的值,进而有θ的范围,可得答案.
解答:解:根据题意,向量
a
b
的夹角为θ,
a
+
b
=(2,-1),
a
=(1,2),
b
=(
a
+
b
)-
a
=(1,-3),
可得|
a
|=
5
,|
b
|=
10

cosθ=
1×1-2×3
5
×
10
=-
2
2

又有0°≤θ≤180°,
则θ=135°,
故选D.
点评:本题考查向量的数量积的运用,要求学生能熟练计算数量积并通过数量积来求出向量的模和夹角或证明垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若向量a,b满足|
a
|=|
b
|=1,
a
b
的夹角为60°,则
a
a
+
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的有(  )
①若向量a与b满足a•b<0,则a与b所成角为钝角;
②若向量a与b不共线,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),则m∥n的充要条件是λ1•μ22•μ1=0;
③若
OA 
+
OB
+
OC 
=0
,且|
OA 
|=|
OB
|=|
OC 
|
,则△ABC是等边三角形;
④若a与b非零向量,a⊥b,则|a+b|=|a-b|.
A、②③④B、①②③C、①④D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有六个命题:
(1)y=tanx在定义域上单调递增
(2)若向量
a
b
b
c
,则可知
a
c

(3)函数y=4cos(2x+
π
6
)
的一个对称点为(
π
6
,0)

(4)非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|
,则可知
a
b
=0
(5)tan(2x+
π
3
)≥
3
的解集为[
1
2
kπ,
1
2
kπ+
π
3
)(k∈z)

其中真命题的序号为
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中数学 来源:崇文区二模 题型:单选题

下列命题中正确的有(  )
①若向量a与b满足a•b<0,则a与b所成角为钝角;
②若向量a与b不共线,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),则mn的充要条件是λ1•μ22•μ1=0;
③若
OA 
+
OB
+
OC 
=0
,且|
OA 
|=|
OB
|=|
OC 
|
,则△ABC是等边三角形;
④若a与b非零向量,a⊥b,则|a+b|=|a-b|.
A.②③④B.①②③C.①④D.②

查看答案和解析>>

科目:高中数学 来源:2008年北京市崇文区高考数学二模试卷(理科)(解析版) 题型:选择题

下列命题中正确的有( )
①若向量a与b满足a•b<0,则a与b所成角为钝角;
②若向量a与b不共线,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),则m∥n的充要条件是λ1•μ22•μ1=0;
③若,且,则△ABC是等边三角形;
④若a与b非零向量,a⊥b,则|a+b|=|a-b|.
A.②③④
B.①②③
C.①④
D.②

查看答案和解析>>

同步练习册答案