精英家教网 > 高中数学 > 题目详情
9.如图,在底面是正三角形的三棱锥P-ABC中,D为PC的中点,PA=AB=1,PB=PC=$\sqrt{2}$.
(Ⅰ)求证:PA⊥平面ABC;
(Ⅱ)求BD与平面ABC所成角的大小;
(Ⅲ)求二面角D-AB-C的余弦值.

分析 (Ⅰ)推导出PA⊥AB,PA⊥AC,由此能证明PA⊥平面ABC.
(Ⅱ)以A为原点,AB为x轴,AP为z轴,平面ABC中垂直于AB的直线为y轴,建立空间直角坐标系,利用向量法能求出BD与平面ABC所成角.
(Ⅲ)求出平面ABD的法向量和平面ABC的法向量,由此能求出二面角D-AB-C的余弦值.

解答 证明:(Ⅰ)∵PA=AB=1,PB=$\sqrt{2}$,∴PA⊥AB,…(1分)
∵底面是正三角形,∴AC=AB=1,
∵PC=$\sqrt{2}$,∴PA⊥AC,…(2分)
∵AB∩AC=A,AB,AC?平面ABC,
∴PA⊥平面ABC. …(3分)
(Ⅱ)以A为原点,AB为x轴,AP为z轴,平面ABC中垂直于AB的直线为y轴,
建立空间直角坐标系,
则A(0,0,0),B(1,0,0),C($\frac{1}{2},\frac{\sqrt{3}}{2}$,0),P(0,0,1),…(4分)
∴D($\frac{1}{4},\frac{\sqrt{3}}{4},\frac{1}{2}$),$\overrightarrow{BD}$=(-$\frac{3}{4},\frac{\sqrt{3}}{4},\frac{1}{2}$).…(5分)
平面ABC的法向量为$\overrightarrow{n}$=(0,0,1),…(6分)
记BD与平面ABC所成的角为θ,
则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{BD}|}{|\overrightarrow{n}|•|\overrightarrow{BD}|}$=$\frac{1}{2}$,…(7分)
∴$θ=\frac{π}{6}$,
∴BD与平面ABC所成角为$\frac{π}{6}$.…(8分)
(Ⅲ)设平面ABD的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=\frac{1}{4}x+\frac{\sqrt{3}}{4}y+\frac{1}{2}z=0}\\{\overrightarrow{m}•\overrightarrow{AB}=x=0}\end{array}\right.$,取y=2,得$\overrightarrow{m}$=(0,2,-$\sqrt{3}$).   …(11分)
记二面角D-AB-C的大小为α,
则cosα=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{21}}{7}$,
∴二面角D-AB-C的余弦值为$\frac{\sqrt{21}}{7}$.…(12分)

点评 本题考查线面垂直的证明,考查线面角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0-9之间整数值的随机数,并制定用1,2,3,4,5表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数
907  966  191  925  271  932  812  458  569  683
431  257  393  027  556  488  730   113  537  989
则这三天中恰有两天下雨的概率近似为(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{4}{15}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等差数列{an}中,a2=3,a7=13,数列{bn}的前n项和为Sn,且Sn=$\frac{4}{3}$(4n-1).
(1)求an及bn
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正数a,b满足4a+b=3,则e${\;}^{\frac{1}{a}}$•e${\;}^{\frac{1}{b}}$的最小值为(  )
A.3B.e3C.4D.e4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\frac{3}{2}$,-$\frac{\sqrt{6}}{2}$),且离心率为$\frac{\sqrt{3}}{3}$.
(I)求椭圆C的标准方程;
(II)若点A(x1,y1),B(x2,y2)是椭圆C上的亮点,且x1≠x2,点P(1,0),证明:△PAB不可能为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆的两个焦点分别为F1(-1,0)和F2(1,0),若该椭圆与直线x+y-3=0有公共点,则其离心率的最大值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{6}}}{6}$-1C.$\frac{{\sqrt{6}}}{12}$D.$\frac{{\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正四棱锥P-ABCD中,点M为侧棱PA的中点.
(Ⅰ)求证:PC∥平面BDM;
(Ⅱ)若PA⊥PC,求证:PA⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆的长轴长是焦距的2倍,则椭圆的离心率为(  )
A.2B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在五面体ABCDEF中,底面ABCD是正方形,△ADE,△BCF都是等边三角形,EF∥AB,且EF>AB,M,O分别为EF,BD的中点,连接MO.
(Ⅰ)求证:MO⊥底面ABCD;
(Ⅱ)若EF=2AB,求二面角E-BD-F的余弦值.

查看答案和解析>>

同步练习册答案