精英家教网 > 高中数学 > 题目详情

如图三棱锥中,是等边三角形.

(Ⅰ)求证:
(Ⅱ)若二面角 的大小为,求与平面所成角的正弦值.

(I) 详见解析;(II)

解析试题分析:(I) 求证:,只需证明一条直线垂直于另一条直线所在的平面,注意到是等边三角形,可考虑取的中点,连接,只需证即可,显然易证,从而可得;(II)若二面角 的大小为,求与平面所成角的正弦值,首先确定二面角的平面角,由(I)可知,即为二面角的平面角,所以,求与平面所成角的正弦值,关键是找在平面上的射影,注意到平面平面,可过点,则,则与平面所成角,为了便于计算,可设,从而求出与平面所成角的正弦值.
试题解析:(I)取的中点,连接.                 2分
是等边三角形,,              4分
     6分
(II)由(I)及条件知,二面角的平面角为,       8分
过点,由(I)知, 又
,                    10分
与平面所成角,               11分
,则.   14分
考点:线线垂直,线面垂直,二面角,线面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图的几何体中,平面为正方形,平面为等腰梯形,.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四面体A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点.

(1)证明:平面ABC平面ADC;
(2)若ÐBDC=60°,求二面角C?BM?D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图长方体中,底面是正方形,的中点,是棱上任意一点.

⑴求证:
⑵如果,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方体的棱长为,线段上有两个动点,且,则下列结论中错误的是(     )

A.
B.三棱锥的体积为定值
C.二面角的大小为定值
D.异面直线所成角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥E—ABCD中,底面ABCD为边长为5的正方形,AE平面CDE,AE=3.

(1)若的中点,求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求EC与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥中,底面是个边长为的正方形,侧棱底面,且的中点.

(I)证明:平面
(II)求三棱锥的体积.

查看答案和解析>>

同步练习册答案