精英家教网 > 高中数学 > 题目详情

【题目】如图,游客从某旅游景区的景点处下上至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到,假设缆车匀速直线运动的速度为,山路长为1260,经测量

1)求索道的长;

2)问:乙出发多少后,乙在缆车上与甲的距离最短?

3)为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在什么范围内?

【答案】1m 23(单位:m/min

【解析】试题分析:(1)根据两角和公式求得,再根据正弦定理即可求得的长;(2)假设乙出发后,甲、乙两游客距离为,分别表示出甲、乙二人行走的距离,根据余弦定理建立的二次函数关系,求出使得甲乙二人距离最短时的值;(3)根据正弦定理求得,乙从出发时,甲已走了

,还需走 才能到达,设乙步行的速度为,由题意得,解不等式即可求得乙步行速度的范围.

试题解析:(1)在中,因为

所以

从而

由正弦定理,得).

2)假设乙出发后,甲、乙两游客距离为,此时,甲行走了,乙距离

所以由余弦定理得

由于,即

故当时,甲、乙两游客距离最短.

3)由正弦定理

).

乙从出发时,甲已走了),还需走710才能到达

设乙步行的速度为,由题意得,解得

所以为使两位游客在处互相等待的时间不超过,乙步行的速度应控制在(单位:)范围内.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数满足,且在上是减函数, 是锐角三角形的两个内角,则的大小关系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记数列的前项和为若存在实数,使得对任意的,都有,则称数列和有界数列”. 下列命题正确的是( )

A. 是等差数列,且首项,则和有界数列

B. 是等差数列,且公差,则和有界数列

C. 是等比数列,且公比,则和有界数列

D. 是等比数列,且和有界数列,则的公比

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的奇函数,且其图象关于直线 对称,当 时, ,则 的值为( )
A.
B.0
C.1
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,其中左焦点为 .
(1)求椭圆 的方程;
(2)过 的直线 与椭圆 相交于 两点,若 的面积为 ,求以 为圆心且与直线 相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,已知直线 ( )和圆 .圆 与直线 的交点为 .
(1)求圆 的直角坐标方程,并写出圆 的圆心与半径.
(2)求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,点 ,圆F2:x2+y2﹣2 x﹣13=0,以动点P为圆心的圆经过点F1 , 且圆P与圆F2内切.
(1)求动点的轨迹的方程;
(2)若直线l过点(1,0),且与曲线E交于A,B两点,则在x轴上是否存在一点D(t,0)(t≠0),使得x轴平分∠ADB?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案