精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)若,求曲线处切线的斜率;

(2)求的单调区间;

(3)设,若对任意,均存在,使得,求的取值范围.

【答案】(1);(2)单调递增区间为,单调递减区间为;(3).

【解析】试题分析:(1)由导数的几何意义求出切线的斜率;(2)先求导,再分别就 求出单调区间,主要函数 的定义域;(3)将已知条件转化为 ,再分别由单调性求出它们的最大值,进而求出的范围.

试题解析:

(1)由已知),则.

故曲线处切线的斜率为3;

(2) ).

①当时,由于,故

所以, 的单调递增区间为.

②当时,由,得.

在区间上, ,在区间

所以,函数的单调递增区间为

单调递减区间为

(3)由已知,转化为

因为

所以

由(2)知,当时, 上单调递增,值域为,故不符合题意.

时, 上单调递增,在上单调递减,

的极大值即为最大值,

所以,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用012345这六个数字:

1)能组成多少个无重复数字的四位偶数?

2)能组成多少个无重复数字且为5的倍数的五位数?

3)能组成多少个无重复数字且比1325大的四位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数

(1)若,求函数上的最值;

(2)若,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)若求曲线处的切线方程

(2)若无零点求实数的取值范围

(3)若有两个相异零点求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为其定义域内的奇函数.

(1)求实数的值;

(2)求不等式的解集;

(3)证明: 为无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:

结果

奖励

1红1白

10元

1红1黑

5元

2黑

2元

1白1黑

不获奖

(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;

(2)某顾客参与两次摸球,求他能中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且

(1)求的值;

(2)若,求的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率

(1)求椭圆的标准方程

(2)若分别是椭圆的左、右焦点,过的直线与椭圆交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为(  )

A. n(n∈Z) B. 2n(n∈Z)

C. 2n或(n∈Z) D. n或(n∈Z)

查看答案和解析>>

同步练习册答案