精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论的单调性;

(2)设函数,当时, 恒成立,求实数的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)先求导数,根据导函数是否变号进行讨论:若 上单调递增;若 先减后增,(2)不等式恒成立问题,一般利用变量分离转化为对应函数最值: 最小值,再利用导数研究函数)单调性:先减后增,最后确定函数最值,即得实数的取值范围.

试题解析:解:(Ⅰ)

①若 上单调递增;

②若,当时, 上单调递减;

时, 上单调递增.

(Ⅱ)当时, 恒成立,即

恒成立.

),则

,则

时, 单调递减;

时, 单调递增.

时,

所以,当时, ,即,所以单调递减;

时, ,即,所以单调递增,

所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙C经过点两点,且圆心C在直线上.

(1)求⊙C的方程;

(2)若直线与⊙C总有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),四点 中恰有三点在椭圆上.

1的方程;

2设直线不经过点且与相交于两点,若直线与直线的斜率之和为证明: 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为, 已知,且 三个数依次成等差数列.

(Ⅰ)求的值;

(Ⅱ)求数列的通项公式;

(Ⅲ)若数列满足,设是其前项和,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形, 的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若任意,不等式恒成立,求实数的取值范围;

(2)求证:对任意 ,都有成立;

(3)对于给定的正数,有一个最大的正数,使得整个区间上,不等式恒成立,求出的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形ABCD中,
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF.
(2)当BE=BF=BC时,求三棱锥A′﹣EFD体积.

查看答案和解析>>

同步练习册答案