精英家教网 > 高中数学 > 题目详情
5.在某产品的生产过程中,次品率p依赖于日产量,已知p=$\left\{\begin{array}{l}{\frac{1}{101-x},0<x≤100}\\{1,x>100}\end{array}\right.$,其中x为正整数,已知该厂每生产一件正品可盈利A元,但生产一件次品就要损失$\frac{A}{3}$元.
(1)将该厂的日盈利额y(元)表示为日产量x(件)的函数,并指出这个函数的定义域:
(2)为了获得最大利益,该厂的日产量应定义为多少.

分析 (1)通过盈利=总盈利额-损失列式即可;
(2)通过(1)可知y=A[101+$\frac{4}{3}$-(101-x)+$\frac{404}{3(101-x)}$],通过令u=101-x换元可知f(x)=u+$\frac{404}{3u}$=g(u)在(0,$\sqrt{\frac{404}{3}}$]上为减函数、在[$\sqrt{\frac{404}{3}}$,+∞)上为增函数,进而计算可得结论.

解答 解:(1)依题意,y=A(x-xp)-$\frac{1}{3}$Ap(0<x≤100);
(2)当x≥100时,产品全为次品,工厂不盈利,不符题意;
故p只能取$\frac{1}{101-x}$,
则y=A[101+$\frac{4}{3}$-(101-x)+$\frac{404}{3(101-x)}$],
换元,令u=101-x,则u∈(1,101),且u为正整数,
则f(x)=u+$\frac{404}{3u}$=g(u)在(0,$\sqrt{\frac{404}{3}}$]上为减函数,在[$\sqrt{\frac{404}{3}}$,+∞)上为增函数,
∵u(12)=f(89)=$\frac{209}{9}$≈23.22<u(11)=f(90)=$\frac{767}{33}$≈23.24,
∴当x=90时y取最大值,
答:为了获得最大利益,该厂的日产量应定义为90件.

点评 本题考查根据实际问题选择函数类型,考查分析问题、解决问题的能力,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在边长为2的菱形ABCD中,∠BAD=$\frac{2π}{3}$,$\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AD}$,则$\overrightarrow{PB}$$•\overrightarrow{PD}$的值为$-\frac{12}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积和体积(尺寸如图,单位:cm,π取3.14,结果分别精确到1cm2,1cm3,可用计算器).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在三棱锥P-ABC中,PA=4,BC=6,与PA、BC都平行的截面四边形EFGH的周长为l,试确定l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α,β为锐角三角形的两个内角,则cosα<sinβ(选填“>”“<”或“=”).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点A(1,0)和点B(5,0)到直线l的距离依次为1和2,则这样的直线有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设命题P:?x∈R,x2>1,则?P为?x∈R,x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算${(\frac{1}{2})^{-2}}$-lg2-lg5=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A(-1,-1),若点P(a,b)为第一象限内的点,且满足|AP|=2$\sqrt{2}$,则ab的最大值为1.

查看答案和解析>>

同步练习册答案