¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©É趯µãP£¨x
£¬y
£©£¬Ôò
£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼´¿É¼ÆËãµÃµ½ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©½áÂÛ¿ÉÓÃÀëÐÄÂʼ°µãA¡¢B¡¢Cºá×ø±ê±íʾ|AF|¡¢|BF|¡¢|CF|£¬ÓÉÆä³ÉµÈ²îÊýÁпɵÃx
1+x
2=2£¬ÓÉA£¬CÔÚÍÖÔ²ÉϵÃ
£¬
£¬Á½Ê½Ïà¼õÕûÀíµÃÖ±ÏßACбÂÊ£¬ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬Óɵãбʽ¿ÉµÃAC´¹Ö±Æ½·ÖÏß·½³Ì£¬ÓÉÖеã×ø±ê¹«Ê½¿É°Ñ¸Ã´¹Ö±Æ½·ÖÏß·½³Ì»¯ÎªÖªº¬²ÎÊýnµÄ·½³Ì£¬¾Ý´Ë¿ÉµÃ¶¨µã£®
£¨3£©Ò×ÖªÖ±ÏßPQµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x
1£¬y
1£©£¬Q£¨x
2£¬y
2£©£¬ÓÉ
µÃ
£¬ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇеá÷=0£¬x
1=-
¢Ù£¬ÓÉÖ±ÏßPQÓëÔ²C
2ÏàÇУ¬Ôò
¢Ú£¬ÁªÁ¢¢Ù¢Ú¿ÉÏûµôm£¬Óɹ´¹É¶¨Àí¿É°Ñ|PQ|
2±íʾΪrµÄº¯Êý£¬ÔÙÓûù±¾²»µÈʽ¿ÉµÃÆä×î´óÖµ£»
½â´ð£º£¨1£©Ö¤Ã÷£ºÉ趯µãP£¨x
£¬y
£©£¬Ôò
£¬
ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈΪ£º
=
=
£¬
¶øa=
£¬c=1£¬ËùÒÔÀëÐÄÂÊe=
£¬
¹Ê¶¯µãPµ½ÍÖÔ²C
1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©¿ÉµÃ|AF|=
£¬|BF|=
£¬|CF|=
£¬
ÒòΪ2|BF|=|AF|+|CF|£¬
ËùÒÔ
=2×
£¬¼´µÃx
1+x
2=2£¬
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
£¬
£¬Á½Ê½Ïà¼õÕûÀíµÃ£º
=-
£¬
ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬¶øm=
=1£¬n=
£¬
ËùÒÔÓëÖ±ÏßAC´¹Ö±µÄÖ±ÏßбÂÊΪk
¡äAC=y
2+y
1=2n£¬
ÔòAC´¹Ö±Æ½·ÖÏß·½³ÌΪy-n=2n£¨x-1£©£¬¼´y=n£¨2x-1£©¾¹ý¶¨µã£¨
£¬0£©£»
£¨3£©ÒÀÌâÒâÖª£¬Ö±ÏßPQµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x
1£¬y
1£©£¬Q£¨x
2£¬y
2£©£¬
ÓÉÓÚÖ±Ïß·½³ÌPQÓëÍÖÔ²C
1ÏàÇУ¬µãPΪÇе㣬´Ó¶øÓÐ
ÓÉ
µÃ
£¬
¹Ê¡÷=£¨4km£©
2-4×2£¨m
2-1£©£¨2k
2+1£©=0£¬´Ó¶ø¿ÉµÃm
2=1+2k
2£¬x
1=-
¢Ù£¬
Ö±ÏßPQÓëÔ²C
2ÏàÇУ¬Ôò
£¬µÃm
2=r
2£¨1+k
2£©¢Ú£¬
ÓÉ¢Ù¢ÚµÃ
£¬ÇÒ
-r
2=
+£¨1-
£©-r
2=1+
-r
2=1+
-r
2=3-r
2£¬¼´|PQ|¡Ü
-1£¬
µ±ÇÒ½öµ±
ʱȡµÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óֵΪ
-1£®
µãÆÀ£º±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¼°ÆäλÖùØϵ£¬¿¼²éѧÉú×ÛºÏÔËÓÃËùѧ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬ÄѶȴó£®