ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬¶¯µãPÔÚÍÖÔ²C1£º+y2=1ÉÏ£¬¶¯µãQÊǶ¯Ô²C2£ºx2+y2=r2£¨1£¼r£¼2£©ÉÏÒ»µã£®
£¨1£©ÇóÖ¤£º¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÍÖÔ²C1ÉϵÄÈýµãA£¨x1£¬y1£©£¬B£¨1£¬£©£¬C£¨x2£¬y2£©ÓëµãF£¨1£¬0£©µÄ¾àÀë³ÉµÈ²îÊýÁУ¬Ï߶ÎACµÄ´¹Ö±Æ½·ÖÏßÊÇ·ñ¾­¹ýÒ»¸ö¶¨µãΪ£¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôÖ±ÏßPQÓëÍÖÔ²C1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©É趯µãP£¨x£¬y£©£¬Ôò£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼´¿É¼ÆËãµÃµ½ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©½áÂÛ¿ÉÓÃÀëÐÄÂʼ°µãA¡¢B¡¢Cºá×ø±ê±íʾ|AF|¡¢|BF|¡¢|CF|£¬ÓÉÆä³ÉµÈ²îÊýÁпɵÃx1+x2=2£¬ÓÉA£¬CÔÚÍÖÔ²Éϵ㬣¬Á½Ê½Ïà¼õÕûÀíµÃÖ±ÏßACбÂÊ£¬ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬Óɵãбʽ¿ÉµÃAC´¹Ö±Æ½·ÖÏß·½³Ì£¬ÓÉÖеã×ø±ê¹«Ê½¿É°Ñ¸Ã´¹Ö±Æ½·ÖÏß·½³Ì»¯ÎªÖªº¬²ÎÊýnµÄ·½³Ì£¬¾Ý´Ë¿ÉµÃ¶¨µã£®
£¨3£©Ò×ÖªÖ±ÏßPQµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Óɵã¬ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇеá÷=0£¬x1=-¢Ù£¬ÓÉÖ±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò¢Ú£¬ÁªÁ¢¢Ù¢Ú¿ÉÏûµôm£¬Óɹ´¹É¶¨Àí¿É°Ñ|PQ|2±íʾΪrµÄº¯Êý£¬ÔÙÓûù±¾²»µÈʽ¿ÉµÃÆä×î´óÖµ£»
½â´ð£º£¨1£©Ö¤Ã÷£ºÉ趯µãP£¨x£¬y£©£¬Ôò£¬
ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈΪ£º
==£¬
¶øa=£¬c=1£¬ËùÒÔÀëÐÄÂÊe=£¬
¹Ê¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©¿ÉµÃ|AF|=£¬|BF|=£¬|CF|=£¬
ÒòΪ2|BF|=|AF|+|CF|£¬
ËùÒÔ=2×£¬¼´µÃx1+x2=2£¬
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓУ¬£¬Á½Ê½Ïà¼õÕûÀíµÃ£º
=-£¬
ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬¶øm==1£¬n=£¬
ËùÒÔÓëÖ±ÏßAC´¹Ö±µÄÖ±ÏßбÂÊΪk¡äAC=y2+y1=2n£¬
ÔòAC´¹Ö±Æ½·ÖÏß·½³ÌΪy-n=2n£¨x-1£©£¬¼´y=n£¨2x-1£©¾­¹ý¶¨µã£¨£¬0£©£»
£¨3£©ÒÀÌâÒâÖª£¬Ö±ÏßPQµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÓÚÖ±Ïß·½³ÌPQÓëÍÖÔ²C1ÏàÇУ¬µãPΪÇе㣬´Ó¶øÓÐ
Óɵã¬
¹Ê¡÷=£¨4km£©2-4×2£¨m2-1£©£¨2k2+1£©=0£¬´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-¢Ù£¬
Ö±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò£¬µÃm2=r2£¨1+k2£©¢Ú£¬
Óɢ٢ڵã¬ÇÒ-r2=+£¨1-£©-r2
=1+-r2=1+-r2=3-r2£¬¼´|PQ|¡Ü-1£¬
µ±ÇÒ½öµ±Ê±È¡µÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óֵΪ-1£®
µãÆÀ£º±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¼°ÆäλÖùØϵ£¬¿¼²éѧÉú×ÛºÏÔËÓÃËùѧ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬ÄѶȴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÔ²ÐÄÔÚÖ±Ïßy=x+4ÉÏ£¬°ë¾¶Îª2
2
µÄÔ²C¾­¹ý×ø±êÔ­µãO£¬ÍÖÔ²
x2
a2
+
y2
9
=1(a£¾0)
ÓëÔ²CµÄÒ»¸ö½»µãµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ10£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©ÈôFΪÍÖÔ²µÄÓÒ½¹µã£¬µãPÔÚÔ²CÉÏ£¬ÇÒÂú×ãPF=4£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Èñ½Ç¦ÁºÍ¶Û½Ç¦ÂµÄÖձ߷ֱðÓ뵥λԲ½»ÓÚA£¬BÁ½µã£®ÈôµãAµÄºá×ø±êÊÇ
3
5
£¬µãBµÄ×Ý×ø±êÊÇ
12
13
£¬Ôòsin£¨¦Á+¦Â£©µÄÖµÊÇ
16
65
16
65
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Èô½¹µãÔÚxÖáµÄÍÖÔ²
x2
m
+
y2
3
=1
µÄÀëÐÄÂÊΪ
1
2
£¬ÔòmµÄֵΪ
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Ì©ÖÝÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¨0£¬1£©£¬B£¨0£¬-1£©£¬C£¨t£¬0£©£¬D(
3t
£¬0)
£¬ÆäÖÐt¡Ù0£®ÉèÖ±ÏßACÓëBDµÄ½»µãΪP£¬Ç󶯵ãPµÄ¹ì¼£µÄ²ÎÊý·½³Ì£¨ÒÔtΪ²ÎÊý£©¼°ÆÕͨ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¶«Ý¸Ò»Ä££©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó½¹µãΪF1£¨-1£¬0£©£¬ÇÒÍÖÔ²CµÄÀëÐÄÂÊe=
1
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²CµÄÉÏ϶¥µã·Ö±ðΪA1£¬A2£¬QÊÇÍÖÔ²CÉÏÒìÓÚA1£¬A2µÄÈÎÒ»µã£¬Ö±ÏßQA1£¬QA2·Ö±ð½»xÖáÓÚµãS£¬T£¬Ö¤Ã÷£º|OS|•|OT|Ϊ¶¨Öµ£¬²¢Çó³ö¸Ã¶¨Öµ£»
£¨3£©ÔÚÍÖÔ²CÉÏ£¬ÊÇ·ñ´æÔÚµãM£¨m£¬n£©£¬Ê¹µÃÖ±Ïßl£ºmx+ny=2ÓëÔ²O£ºx2+y2=
16
7
ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡÷OABµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê¼°¶ÔÓ¦µÄ¡÷OABµÄÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸