6£®ÒÑÖªÇãб½ÇΪ45¡ãµÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+mt\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬P£¨1£¬2£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßMµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨5cos2¦È-1£©=4£®Ö±ÏßlÓëÇúÏßM½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇómµÄÖµ¼°ÇúÏßMµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó|PA|•|PB|µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýµÃ$\frac{y-2}{x-1}=\frac{{\frac{{\sqrt{2}}}{2}}}{m}=tan45¡ã$£¬ÓÉ´ËÄÜÇó³ömµÄÖµ£»ÓɦÑ2=x2+y2£¬¦Ñcos¦È=x£¬ÄÜÇó³öÇúÏßMµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©½«$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$´úÈë4x2-y2=4£¬µÃ$3{t^2}+4\sqrt{2}t-8=0$£¬ÓÉtµÄ¼¸ºÎÒâÒåÄÜÇó³ö|PA|•|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÇãб½ÇΪ45¡ãµÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+mt\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
¡àÏûÈ¥²ÎÊýµÃ$\frac{y-2}{x-1}=\frac{{\frac{{\sqrt{2}}}{2}}}{m}=tan45¡ã$£¬½âµÃ$m=\frac{{\sqrt{2}}}{2}$£®¡­£¨2·Ö£©
ÇúÏßMµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨5cos2¦È-1£©=4£¬
¼´5¦Ñ2cos2¦È-¦Ñ2=4£¬
¡ß¦Ñ2=x2+y2£¬¦Ñcos¦È=x£¬
¡àÇúÏßMµÄÖ±½Ç×ø±ê·½³ÌΪ4x2-y2=4£®¡­£¨5·Ö£©
£¨2£©½«$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$´úÈë4x2-y2=4£¬
ÕûÀíµÃ$3{t^2}+4\sqrt{2}t-8=0$£¬¡­£¨8·Ö£©
ÓÉtµÄ¼¸ºÎÒâÒåµÃ$|{PA}|•|{PB}|=|{{t_1}•{t_2}}|=\frac{8}{3}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éʵÊýÖµºÍÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶εij˻ýµÄÇ󷨣¬¿¼²é¼«×ø±ê¡¢Ö±½Ç×ø±êµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éת»¯»¯¹é˼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015-2016ѧÄê½­Î÷Ê¡ÄϲýÊиßÒ»ÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªËæ»ú±äÁ¿µÄÖµÈçϱíËùʾ£¬Èç¹ûÓëÏßÐÔÏà¹Ø£¬ÇһعéÖ±Ïß·½³ÌΪ£¬ÔòʵÊýµÄֵΪ£¨ £©

A£® B£® C£® D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015-2016ѧÄ꼪ÁÖÊ¡¸ßÒ»ÏÂѧÆÚÆÚÄ©Áª¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªA£¬B£¬CÈýµãÔÚÇòOµÄÇòÃæÉÏ£¬AB=BC=CA=3£¬ÇÒÇòÐÄOµ½Æ½ÃæABCµÄ¾àÀëµÈÓÚÇò°ë¾¶µÄ£¬ÔòÇòOµÄ±íÃæ»ýΪ £¨ £©

A£® B£® C£® D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªsin¦Á£¬cos¦Á ÊÇ·½³Ì3x2-2x+a=0 µÄÁ½¸ù£¬Ôòa=-$\frac{5}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èñ½ÇÈý½ÇÐΡ÷ABCÖУ¬ÈôA=2B£¬ÔòÏÂÁÐÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢Ùsin3B=sinC
¢Ú$tan\frac{3B}{2}tan\frac{C}{2}=1$
¢Û$\frac{¦Ð}{6}£¼B£¼\frac{¦Ð}{4}$
¢Ü$\frac{a}{b}¡Ê£¨{\sqrt{3}£¬2}£©$£®
A£®¢Ù¢ÚB£®¢Ù¢Ú¢ÛC£®¢Û¢ÜD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ä³ËÄÀâ׶µÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬Ôò¸ÃËÄÀâ׶µÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®£¨13+3$\sqrt{7}$£©cm2B£®£¨12+4$\sqrt{3}$£©cm2C£®£¨18+3$\sqrt{7}$£©cm2D£®$£¨9+3\sqrt{2}+3\sqrt{5}£©c{m^2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÈýÖ»ÃÜ·âµÄºÐ×ÓÖзֱð×°ÓÐ2¸öºÚÇò£¬2¸ö°×Çò£¬1¸öºÚÇò1¸ö°×Çò£¬ÓÉÓÚÉÏÃæµÄ±êÇ©È«Ìù´íÁË£¬Ä³ÈËÏÖ´ÓÌùÓÐ1¸öºÚÇò1¸ö°×Çò±êÇ©µÄºÐ×ÓÖÐÃþ³öÁ½¸öºó·¢ÏÖÈ«ÊÇ°×Çò£¬ÔòÌùÓÐ2¸öºÚÇò±êÇ©µÄºÐ×ÓÖÐÆäʵÊÇ×°ÓÐ1¸öºÚÇò1¸ö°×Çò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªa£¬b¡Ê[-1£¬1]£¬Ôò²»µÈʽx2-2ax+b¡Ý0ÔÚx¡ÊRÉϺã³ÉÁ¢µÄ¸ÅÂÊΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑ֪ij¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®4+4¦ÐB£®4+3¦ÐC£®3+4¦ÐD£®3+3¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸