精英家教网 > 高中数学 > 题目详情
6.cos350°cos40°-sin190°cos50°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 由条件利用诱导公式,两角和差的余弦公式,化简所给的式子可得结果.

解答 解:cos350°cos40°-sin190°cos50°=cos10°cos40°+sin10°sin40°=cos(10°-40°)
=cos30°=$\frac{\sqrt{3}}{2}$,
故选:C.

点评 本题主要考查诱导公式,两角和差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.写出下列命题p的非p形式(否定)
(1)p:100既能被4整除又能被5整除
(2)p:三条直线两两相交
(3)p:一元二次方程至多有两个解
(4)p:2<x≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设3x-1,x,4x是等差数列{an}的前三项,则a4=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的前n项和为Sn,当${S_n}={n^2}+2n$时,a4+a5=(  )
A.11B.20C.33D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.为了调查学生每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.样本容量1000的频率分布直方图如图所示,则样本数据落在[6,14)内的频数为680.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列四个命题.
①命题p:对任意x∈R,sinx≤1的否定¬p:存在x∈R,sinx>1;
②“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;
③若$\overrightarrow{a}$与$\overrightarrow{b}$+$\overrightarrow{c}$都是非零向量,则“$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$”是“$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$)”的必要不充分条件;
④命题“若一个整数能被6整除,则它能被3整除”的否命题是假命题.其中真命题的序号是①.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2(2,0)与x轴垂直的直线交椭圆于点M,且|MF2|=3.
(1)求椭圆的标准方程;
(2)已知点P(0,1),问是否存在直线1与椭圆交于不同的两点A,B,且AB的垂直平分线恰好过P点?若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用导数的定义求函数y=$\sqrt{x}$的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,长轴两个顶点分别为A,B.若C上有一点P,使得∠APB=120°,则离心率e的范围为$[\frac{\sqrt{6}}{3},1)$.

查看答案和解析>>

同步练习册答案