精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)讨论函数的单调区间;

(2)求证:

(3)求证:当时, 恒成立.

【答案】(1)当时,函数上单调递增;当时,函数的单调递增区间是,单调递减区间是.(2)见解析;(3)见解析.

【解析】试题分析:(1)求函数的导数,讨论,分当,,令导数大于0,得增区间,令导数小于0,得减区间;
(2),由(1)可知,函数的最小值为,不等式得证;

(3)构造函数,证明其最小值大于等于0即可.

试题解析:(1)

(ⅰ)当时, ,函数上单调递增;

(ⅱ)当时,令,则

,即时,函数单调递增;

,即时,函数单调递减.

综上,当时,函数上单调递增;当时,函数的单调递增区间是,单调递减区间是.

(2)证明:令,由(1)可知,函数的最小值为,∴,即.

(3)证明: 恒成立与恒成立等价,

,即,则

时, (或令,则上递增,∴,∴上递增,∴,∴

在区间上单调递增,

恒成立.

点晴:本题主要考查函数单调性,不等式恒成立,及不等式的证明问题.要求单调性,求导比较导方程的根的大小,解不等式可得单调区间,要证明不等式恒成立问题可转化为构造新函数,求其值最值即可.这类问题的通解方法就是:划归与转化之后,就可以假设相对应的函数,然后利用导数研究这个函数的单调性、极值和最值,图像与性质,进而求解得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经统计,某医院一个结算窗口每天排队结算的人数及相应的概率如下:

排除人数

0--5

6--10

11--15

16--20

21--25

25人以上

概率

0.1

0.15

0.25

0.25

0.2

0.05

(1)求每天超过20人排队结算的概率;

(2)求2天中,恰有1天出现超过20人排队结算的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数定义域为,且对任意实数,有,则称为“形函数”,若函数定义域为,函数对任意恒成立,且对任意实数,有,则称为“对数形函数” .

(1)试判断函数是否为“形函数”,并说明理由;

(2)若是“对数形函数”,求实数的取值范围;

(3)若是“形函数”,且满足对任意,有,问是否为“对数形函数”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂生产某产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:

2

4

6

8

10

4

5

7

9

10

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)根据(1)中求出的线性回归方程,预测生产20吨该产品的生产能耗是多少吨标准煤?

附:回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)求的单调区间;

(Ⅱ)若存在极值点,且,其中,求证:

(Ⅲ)设,函数,求证: 在区间上最大值不小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且

(1)求角C的大小;

(2)若 ,且三角形ABC的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程.

已知曲线的参数方程为(为参数),以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)若直线的极坐标方程为,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,摩天轮的半径为米,点距地面高度为米,摩天轮做匀速运动,每分钟转一圈,以点为原点,过点且平行与地平线的直线为轴建立平面直角坐标系,设点的起始位置在最低点(且在最低点开始时),设在时刻(分钟)时点距地面的高度(米),则的函数关系式

__________.在摩天轮旋转一周内,点到地面的距离不小于米的时间长度为 __________(分钟)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

)求函数的解析式;

)若对任意,都有,求的取值范围;

)证明函数的图象在图象的下方.

查看答案和解析>>

同步练习册答案