【题目】已知,
其中,若函数,且它的最小正周期为.
(普通中学只做1,2问)
(1)求的值,并求出函数的单调递增区间;
(2)当(其中)时,记函数的最大值与最小值分
别为与,设,求函数的解
析式;
(3)在第(2)问的前提下,已知函数, ,若对于任意, ,总存在,使得
成立,求实数t的取值范围.
科目:高中数学 来源: 题型:
【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在, , 对应的小矩形的面积分别是,且.
(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;
(2)若按照分层抽样,从年龄在的人群中共抽取6人,再从这6人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】衡州市英才中学贯彻党的教育方针,促进学生全面发展,积极组织开展了丰富多样的社团活动,根据调查,英才中学在传统民族文化的继承方面开设了“泥塑”、“剪纸”、“曲艺”三个社团,三个社团参加的人数如下表所示:
社团 | 泥塑 | 剪纸 | 曲艺 |
人数 | 320 | 240 | 200 |
为调查社团开展情况,学校社团管理部采用分层抽样的方法从中抽取一个容量为的样本,已知从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人。
(1)求三个社团分别抽取了多少同学;
(2)若从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“剪纸”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式 性别 | 看电视 | 看书 | 合计 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合计 | 40 | 120 | 160 |
下面临界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求 的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:
月工资 (单位:百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
男员工数 | 1 | 8 | 10 | 6 | 4 | 4 |
女员工数 | 4 | 2 | 5 | 4 | 1 | 1 |
(1) 试由上图估计该单位员工月平均工资;
(2)现用分层抽样的方法从月工资在和的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在和两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用、、三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表:
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
甲 | 4次 | 6次 | 2次 | 12次 | |
乙 | 3次 | 6次 | 3次 | 12次 | |
丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com