精英家教网 > 高中数学 > 题目详情

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

(1)(2)详见解析

解析试题分析:(1)本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件数,列举出结果,满足条件的事件也可以列举出结果,得到概率.
(2)根据所给的数据,列出列联表,根据列联表中的数据,做出观测值,把观测值同临界值表进行比较,得到有90%的把握认为成绩优秀与教学方式有关.
试题解析:解析 (1)设“抽出的两个均‘成绩优秀’”为事件A.
从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99),(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个.
而事件A包含基本事件:
(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个.
所以所求概率为P(A)=.
(2)由已知数据得

 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
1
5
6
成绩不优秀
19
15
34
总计
20
20
40
 
根据列联表中数据,
K2
由于3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.
考点:1.茎叶图;2.独立性检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合计
男生
 
6
 
女生
10
 
 
合计
 
 
48
 
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考
P(K2≥k)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

商场销售的某种饮品每件售价为36元,成本为20元.对该饮品进行促销:顾客每购买一件,当即连续转动三次如图所示转盘,每次停止后指针向一个数字,若三次指向同一个数字,获一等奖;若三次指向的数字是连号(不考虑顺序),获二等奖;其他情况无奖.
(1)求一顾客一次购买两件该饮品,至少有一件获得奖励的概率;
(2)若奖励为返还现金,一等奖奖金数是二等奖的2倍,统计表明:每天的销售y(件)与一等奖的奖金额x(元)的关系式为,问x设定为多少最佳?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·洛阳模拟)现有一批产品共有10件,其中8件为正品,2件为次品.
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率.
(2)如果从中一次取3件,求3件都是正品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去.试求这两人能会面的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为调查某社区居民的业余生活状况,研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:

     休闲方式
性别  
看电视
看书
合计

10
50
60

10
10
20
合计
20
60
80
 
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和数学期望;
(2)根据以上数据,我们能否在犯错误的概率不超过0.01的前提下,认为“在20:00-22:00时间段居民的休闲方式与性别有关系”?
参考公式:K2,其中n=a+b+c+d.
参考数据:
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

黄山旅游公司为了体现尊师重教,在每年暑假期间对来黄山旅游的全国各地教师和学生,凭教师证和学生证实行购买门票优惠.某旅游公司组织有22名游客的旅游团到黄山旅游,其中有14名教师和8名学生.但是只有10名教师带了教师证,6名学生带了学生证.
(1)在该旅游团中随机采访3名游客,求恰有1人持有教师证且持有学生证者最多1人的概率;
(2)在该团中随机采访3名学生,设其中持有学生证的人数为随机变量ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从(如图)这8个点中任取两点分别分终点得到两个向量,记这两个向量的数量积为X。若X=0就参加学校合唱团,否则就参加学校排球队。

(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲乙两人进行乒乓球比赛,各局相互独立,约定每局胜者得1分,负者得0分,如果两人比赛五局,乙得1分与得2分的概率恰好相等.
求乙在每局中获胜的概率为多少?
假设比赛进行到有一人比对方多2分或打满6局时停止,用表示比赛停止时已打局数,求的期望.

查看答案和解析>>

同步练习册答案