精英家教网 > 高中数学 > 题目详情
已知抛物线x2=2py(p为常数,p≠0)上不同两点A、B的横坐标恰好是关于x的方程x2+6x+4q=0(q为常数)的两个根,则直线AB的方程为
 
分析:本题考查的知识点是直线的一般方程,由已知A、B的横坐标是方程x2+6x+4q=0的两个根,由一元二次方程根与系数的关系(韦达定理),我们易得x1+x2=-6,x1•x2=4q,再由A、B也在抛物线上,易得y1,y2的值,代入两点式方程,整理即可得到答案.
解答:解:设A,B两点坐标分别为(x1,y1),(x2,y2
由A、B的横坐标是方程x2+6x+4q=0的两个根
则x1+x2=-6,x1•x2=4q
又由A、B也在抛物线上,
则y1=
1
2p
x
2
1
,y2=
1
2p
x
2
2

代入两点式方程得:
x-x1
x2-x1
=
y-y1
y2-y1

即x-x1=
2py-
x
2
1
-6

即6x+2py=x12+6x1=x12+x1x2+6x1-x1x2=x1(x1+x2)+6x1-4q=-4q
即:3x+py+2q=0
故答案为:3x+py+2q=0
点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•广州模拟)已知抛物线x2=2py(p>0),过动点M(0,a),且斜率为1的直线L与该抛物线交于不同两点A、B,|AB|≤2p,
(1)求a的取值范围;
(2)若p=2,a=3,求直线L与抛物线所围成的区域的面积.

查看答案和解析>>

科目:高中数学 来源:黑龙江省大庆实验中学2010-2011学年高二上学期期末考试数学理科试题 题型:013

已知抛物线x2=2py(p>0),过点向抛物线引两条切线,AB为切点,则线段AB的长度是

[  ]
A.

2p

B.

p

C.

D.

查看答案和解析>>

科目:高中数学 来源:广东省广州市2007年高三年级六校联考数学理科试卷 题型:044

已知抛物线x2=2py(p>0),过动点M(0,a),且斜率为1的直线L与该抛物线交于不同两点A、B,|AB|≤2p,

(1)求a的取值范围;

(2)若p=2,a=3,求直线L与抛物线所围成的区域的面积;

查看答案和解析>>

科目:高中数学 来源:2010年江西省名校高考信息卷一(理) 题型:选择题

 已知抛物线x2 = 2py (p > 0),过点M (0 , - )向抛物线引两条切线,AB为切点,则线段

AB的长度是

A.2p

B.p

C.

D.

 

查看答案和解析>>

同步练习册答案