精英家教网 > 高中数学 > 题目详情

【题目】(导学号:05856309)

已知抛物线C的方程为x2=4yM(2,1)为抛物线C上一点,F为抛物线的焦点.

(Ⅰ)求|MF|;

(Ⅱ)设直线l2ykxm与抛物线C有唯一公共点P,且与直线l1y=-1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

【答案】(1)2;(2) 在坐标平面内存在点N,使得以PQ为直径的圆恒过点N,其坐标为(0,1)

【解析】试题分析:(1)求得抛物线的焦点和准线方程,根据抛物线的定义,即可得到所求|MF|

2)假设存在点N,使得以PQ为直径的圆恒过点N,由直线l2y=kx+m与抛物线C有唯一公共点P知,直线l2与抛物线C相切,利用导数求出直线l2的方程,进而求出Q点坐标,根据直径所对的圆周角为直角,利用,求出N点坐标.

试题解析:

(Ⅰ)由题可知2p=4,即p=2,由抛物线的定义可知|MF|=1+=2.

(Ⅱ)由C关于y轴对称可知,若存在点N,使得以PQ为直径的圆恒过点N,则点N必在y轴上.

N(0,n),又设点P(x0),由直线l2ykxm与曲线C有唯一公共点P知,直线l2C相切.

yx2y′=x,∴

∴直线l2的方程为y (xx0),

y=-1得x

Q点的坐标为(,-1),

=(x0n),=(,-1-n).

∵点N在以PQ为直径的圆上,

·-2-(1+n)(n)

=(1-n)n2n-2=0,①

要使方程①对x0恒成立,

必须有解得n=1,

∴在坐标平面内存在点N,使得以PQ为直径的圆恒过点N,其坐标为(0,1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(导学号:05856264)

已知函数f(x)=aln x,e为自然对数的底数.

(Ⅰ)曲线f(x)在点A(1,f(1))处的切线与坐标轴所围成的三角形的面积为2,求实数a的值;

(Ⅱ)若f(x)≥1-恒成立,求实数a的值取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与者投币20元有一次摸奖机会,一次性从箱子中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全是红球奖金100元.

(1)求献爱心参与者中将的概率;

(2)若该次募捐900位献爱心参与者,求此次募捐所得善款的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

1)求该网民至少购买4种商品的概率;

2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856299)已知双曲线 (a>0,b>0)的左、右焦点分别是F1F2,点P是其上一点,双曲线的离心率是2,若△F1PF2是直角三角形且面积为3,则双曲线的实轴长为(  )

A. 2 B. C. 2或 D. 1或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届吉林省普通中学高三第二次调研】某校冬令营有三名男同学A,B,C和三名女同学X,Y,Z

1)从6人中抽取2人参加知识竞赛,求抽取的2人都是男生的概率;

2)若从这3名男生和3名女生中各任选一名,求这2人中包含A且不包含X的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856332)

已知三棱柱ABCA1B1C1如图所示,其中CA⊥平面ABB1A1,四边形ABB1A1为菱形,∠AA1B1=60°,EBB1的中点,FCB1的中点.

(Ⅰ)证明:平面AEF⊥平面CAA1C1

(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】pf(x)在区间(1,+∞)上是减函数;q:若x1x2是方程x2ax20的两个实根,则不等式m25m3≥|x1x2|对任意实数a[1,1]恒成立.若p不正确,q正确,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位mol/L,记作和氢氧根离子的物质的量的浓度(单位mol/L,记作的乘积等于常数.已知pH值的定义为,健康人体血液的pH值保持在7.357.45之间,那么健康人体血液中的可以为(参考数据:

A. B. C. D.

查看答案和解析>>

同步练习册答案