精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其导函数f′(x)的部分图象如图所示,则函数f(x)的解析式为(
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+
C.f(x)=4sin( x+
D.f(x)=4sin( x+

【答案】B
【解析】解:根据题意,对函数f(x)=Asin(ωx+φ)求导,可得f′(x)=ωAcos(ωx+φ), 由导函数的图象可得A=2,再由 = = ﹣(﹣ ),求得ω= .则Aω=2,即A=4,
∴导函数f′(x)=2cos( x+φ),
把( ,0)代入得:2cos( +φ)=0,且|φ|<π,解得φ=
故函数f(x)的解析式为 f(x)=4sin( x+ ).
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在D上的函数 ,若满足: ,都有 成立,则称 D上的有界函数,其中M称为函数 的上界.
(I)设 ,证明: 上是有界函数,并写出 所有上界的值的集合;
(II)若函数 上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求函数的单调区间;
(2)若函数 有两个零点 ,证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以表示.

)如果乙组同学投篮命中次数的平均数为, 及乙组同学投篮命中次数的方差;

)在()的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A两名同学的投篮命中次数之和为17”, 求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)用五点法画出它在一个周期内的闭区间上的图象;

(2)指出f(x)的周期、振幅、初相、对称轴;

(3)此函数图象由y=sinx的图象怎样变换得到?(注:y轴上每一竖格长为1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|=

(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x﹣1)2+y2= ,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2 截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式|x﹣a|<b的解集为{x|2<x<4}.
(Ⅰ)求实数a,b的值;
(Ⅱ)设实数x,y,z 满足 + + =1,求x,y,z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a1+a2=10,a5=a3+4.

(1)求{an}的通项公式;

(2)记{an}的前n项和为Sn若Sk+1<2ak+a2,求正整数k的值

查看答案和解析>>

同步练习册答案