分析 由已知得f(x+2)=-$\frac{1}{f(x+1)}$=f(x),从而f($log_{\frac{1}{2}}{18}$)=f(-1-log29)=-f(1+log29)=-f(log29-3)=-$f(lo{g}_{2}\frac{9}{8})$,由此利用当x∈[0,1]时,f(x)=2x-1,能求出结果.
解答 解:∵在R上的奇函数f(x)满足f(x+1)=-$\frac{1}{f(x)}$.
∴f(x+2)=-$\frac{1}{f(x+1)}$=f(x),
∵当x∈[0,1]时,f(x)=2x-1,
∴f($log_{\frac{1}{2}}{18}$)=f(-1-log29)=-f(1+log29)=-f(log29-3)
=-$f(lo{g}_{2}\frac{9}{8})$=-(${2}^{lo{g}_{2}\frac{9}{8}}$-1)=-($\frac{9}{8}-1$)=-$\frac{1}{8}$.
故答案为:-$\frac{1}{8}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com