精英家教网 > 高中数学 > 题目详情
7.$y=\frac{1}{2}sin(2x-\frac{π}{3})$的对称中心是($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z.

分析 利用正弦函数的图象的对称性,求得该函数的图象的对称中心.

解答 解:∵函数$y=\frac{1}{2}sin(2x-\frac{π}{3})$,令2x-$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
故函数的图象的对称中心是($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z,
故答案为:$(\frac{kπ}{2}+\frac{π}{6},0)(k∈Z)$.

点评 本题主要考查正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.-1B.-2C.-3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知幂函数$f(x)={x^{{m^2}-2m-3}}(m∈Z)$为偶函数,且在区间(0,+∞)上减函数,则m的值为(  )
A.-1<m<3B.1C.1或2D.0或1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,A、B是边长为1的小正方形组成的网格的两个顶点,在格点中任意放置点C,恰好能使其构成△ABC且面积为1的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{9}$C.$\frac{2}{9}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于z的实系数一元二次方程z2+5z+a=0的两个复数根为α、β,试用实数a表示|α|+|β|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列关于算法与程序框图的说法正确的有(  )
①求解某一类问题的算法是唯一的;
②表达算法的基本逻辑结构包括顺序结构、计算结构、条件结构、循环结构;
③算法的每一步操作必须是明确的,不能有歧义;
④任何一个程序框图都必须有起止框.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线x+2y-4=0与抛物线${y^2}=\frac{1}{2}x$相交于A,B两点(A在B上方),O是坐标原点.
(Ⅰ)求抛物线在A点处的切线方程;
(Ⅱ)试在抛物线的曲线AOB上求一点P,使△ABP的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简求值:
(1)计算${6.25^{\frac{1}{2}}}-lg\frac{1}{100}+ln\sqrt{e}+{2^{1+{{log}_2}3}}$
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=2,求$\frac{{x+{x^{-1}}-1}}{{{x^2}+{x^{-2}}+3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α、β顶点在坐标原点,始边为x轴正半轴.甲:“角α、β的终边关于y轴对称”;乙:“sin(α+β)=0”.则条件甲是条件乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案