精英家教网 > 高中数学 > 题目详情

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

【答案】解:(I) 设该运动员到篮筐的水平距离的中位数为x,
∵0.05×2+0.10+0.20<0.5,且(0.40+0.20)×1=0.6>0.5,
∴x∈[4,5]
由0.40×(5﹣x)+0.20×1=0.5,解得x=4.25,
∴该运动员到篮筐的水平距离的中位数是4.25(米).
(Ⅱ)由频率分布直方图得投篮命中时距离篮筐距离超过4米的概率为p=
随机变量ξ的所有可能取值为﹣4,﹣2,0,2,4,






∴X的分布列为:

X

﹣4

﹣2

0

2

4

P

EX=(﹣4)× +(﹣2)× +0× +2× +4× =
【解析】(I) 设该运动员到篮筐的水平距离的中位数为x,推导出0.40×(5﹣x)+0.20×1=0.5,由此能求出该运动员到篮筐的水平距离的中位数.(Ⅱ)由频率分布直方图得投篮命中时距离篮筐距离超过4米的概率为p= ,随机变量ξ的所有可能取值为﹣4,﹣2,0,2,4,分别求出相应的概率,由此能求出X的分布列和EX.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示.

(1)求函数的解析式;

(2)求图中的值及函数的单调递减区间;

(3)若将的图象向左平移个单位后,得到的图像关于直线对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B、C为⊙O上三点,B为 的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为 ,则m的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为(t为参数)曲线C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为

)求直线l以及曲线C的极坐标方程;

(Ⅱ)设直线l与曲线C交于AB两点,求三角形PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex﹣ax2﹣2x+b(e为自然对数的底数,a,b∈R).
(Ⅰ)设f′(x)为f(x)的导函数,证明:当a>0时,f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合条件的最小整数b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求经过点且分别满足下列条件的直线的一般式方程.

(1)倾斜角为45°;

(2)在轴上的截距为5;

(3)在第二象限与坐标轴围成的三角形面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上的点到其焦点的距离为.

(Ⅰ)求的方程;

(Ⅱ) 已知直线不过点且与相交于两点,且直线与直线的斜率之积为1,证明:过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中向量

1)求函数的最小正周期与单调递减区间;

2)在中,分别是角的对边,已知的面积为,求外接圆半径

查看答案和解析>>

同步练习册答案