精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,BCDCAEDCMN分别是ADBE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).

①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MNAE;③不论D折至何位置(不在平面ABC内),都有MNAB;④在折起过程中,一定存在某个位置,使ECAD.

【答案】①②④

【解析】试题分析:将三角形ADE沿AE折起后几何体如图所示:

因为MN分别是ADBE的中点,所以不论D折至何位置(不在平面ABC内)都有所以正确;

,所以正确;

,相交,所以相交,所以错;

时,因为平面,所以存在某个位置,使,所以正确;故答案为①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求 的定义域;
(2)判断并证明 的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若 ,求 在区间 上的最小值;
(2)若 在区间 上有最大值 ,求实数 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1ax3y60l22x(a1)y60与圆Cx2y22xb21(b>0)的位置关系是“平行相交”,则实数b的取值范围为 (   )

A. ( ) B. (0 )

C. (0 ) D. ( )(,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lx轴上的截距比在y轴上的截距大1且过点(6-2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示的平面图形中,ABCD是边长为2的正方形,△HDA和△GDC都是以D为直角顶点的等腰直角三角形,点E是线段GC的中点.现将△HDA和△GDC分别沿着DA,DC翻折,直到点H和G重合为点P.连接PB,得如图2的四棱锥.
(Ⅰ)求证:PA∥平面EBD;
(Ⅱ)求二面角C﹣PB﹣D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2018x+log2018x,则函数f(x)的零点个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1(k3)x(4k)y10l22(k3)x2y30.

(1)若这两条直线垂直k的值;

(2)若这两条直线平行k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在Rt△AOB中,AO=1,BO=2,如图,动点P是在以O点为圆心,OB为半径的扇形内运动(含边界)且∠BOC=90°;设 ,则x+y的取值范围

查看答案和解析>>

同步练习册答案