精英家教网 > 高中数学 > 题目详情

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

【答案】(1),;(2).

【解析】试题分析:1先求出圆心坐标分别求出线段的垂直平分线,求出两直线的交点即为圆心坐标求出圆心与点的距离即为圆的半径写出圆的标准方程即可;2分两种情况考虑:当斜率不存在时,直线满足题意;当斜率存在时为,表示出切线方程,根据直线与圆相切时,圆心到切线的距离等于圆的半径求出的值确定出此时切线方程.

试题解析:(1)设圆的方程为:

将三个带你的坐标分别代入圆的方程,解得

所以圆的方程为,圆心是、半径.

(2)当所求直线方程斜率不存在时,直线方程为,与圆相切;

当所求直线方程斜率存在时,设直线方程为:

因为与圆相切,所以圆心到直线的距离等于半径,

根据点到直线的距离公式得

所以所求直线方程为

综上,所以直线为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,Sn为{an}的前n项和,且a10=19,S10=100;数列{bn}对任意n∈N* , 总有b1b2b3…bn1bn=an+2成立.
(1)求数列{an}和{bn}的通项公式;
(2)记cn=(﹣1)n ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α< <β<π,tan ,cos(β﹣α)=
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知椭圆的短轴长为,且与抛物线有共同的焦点,椭圆的左顶点为A,右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点.

I)求椭圆的方程;

)求线段的长度的最小值;

)在线段的长度取得最小值时,椭圆上是否存在一点,使得的面积为,若存在求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AB=BC=BB1DAC上的点,B1C∥平面A1BD

(1)求证:BD⊥平面

(2)若,求三棱锥A-BCB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:


常喝

不常喝

合计

肥胖


2


不肥胖


18


合计



30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为

1)请将上面的列表补充完整;

2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;

34名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.

参考数据:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的三个侧面均为边长是的等边三角形, 分别为 的中点.

(I)求的长.

(II)求证:

(III)求三棱锥的表面积.

查看答案和解析>>

同步练习册答案