精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ex(sinx﹣cosx)(0≤x≤2016π),则函数f(x)的各极大值之和为( )
A.
B.
C.
D.

【答案】D
【解析】解::∵函数f(x)=ex(sinx﹣cosx),

∴f′(x)=[ex(sinx﹣cosx)]′=ex(sinx﹣cosx)+ex(cosx+sinx)=2exsinx;

令f′(x)=0,解得x=kπ(k∈Z);

∴当2kπ<x<2kπ+π时,f′(x)>0,原函数单调递增,

当2kπ+π<x<2kπ+2π时,f′(x)<0,原函数单调递减;

∴当x=2kπ+π时,函数f(x)取得极大值,

此时f(2kπ+π)=e2kπ+π[sin(2kπ+π)﹣cos(2kπ+π)]=e2kπ+π

又∵0≤x≤2016π,∴0和2016π都不是极值点,

∴函数f(x)的各极大值之和为:

eπ+e+e+…+e2015π=

所以答案是:D.

【考点精析】认真审题,首先需要了解函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},则A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示, 是圆柱的母线, 是圆柱底面圆的直径, 是底面圆周上异于的任意一点, .

(1)求证:

(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点P(﹣3 ,4),它的渐近线方程为y=± x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为CC1和BB1的中点,则异面直线AE与D1F所成角的余弦值为( )

A.0
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 函数.

(1)求在区间上的最大值和最小值

(2)若 的值

3)若函数在区间上是单调递增函数求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且ab=1,则函数f(x)=ax与函数g(x)=﹣logbx的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log
(1)求f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若 时,有成立.

(1)判断上的单调性,并证明;

(2)解不等式

(3)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案