精英家教网 > 高中数学 > 题目详情

【题目】梯形顶点在以为直径的圆上,米.

(1)如图1,若电热丝由这三部分组成,在上每米可辐射1单位热量,在上每米可辐射2单位热量,请设计的长度,使得电热丝的总热量最大,并求总热量的最大值;

(2)如图2,若电热丝由弧和弦这三部分组成,在弧上每米可辐射1单位热量,在弦上每米可辐射2单位热量,请设计的长度,使得电热丝辐射的总热量最大.

【答案】(1)9单位;(2).

【解析】

(1)取角为自变量,设∠AOBθ,分别表示ABBC,根据题意得函数8cosθ+8 sin,利用二倍角余弦公式得关于sin二次函数 ,根据二次函数对称轴与定义区间位置关系求最值(2)取角为自变量,设∠AOBθ,利用弧长公式表示,得函数4θ+8cosθ,利用导数求函数单调性,并确定最值

总热量单位

时,取最大值,

此时米,总热量最大9(单位).

答:应设计长为米,电热丝辐射的总热量最大,最大值为9单位.

(2)总热量单位

,即

时,为增函数,当时,为减函数,

时,,此时米.

答:应设计长为米,电热丝辐射的总热量最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an=logn+1n+2)(nN*)定义使a1a2ak为整数的数k叫做企盼数,则区间[12019]内所有的企盼数的和是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】考虑某长方体的三个两两相邻的面上的三条对角线及体对角线(共四条线段),则正确的命题是( )

A. 必有某三条线段不能组成一个三角形的三边

B. 任何三条线段都可组成三角形,其每个内角都是锐角

C. 任何三条线段都可组成三角形,其中必有一个是钝角三角形

D. 任何三条线段都可组成三角形,其形状是“锐角的”或是“非锐角的”,随长方体的长、宽、高而变化,不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点

1)若,求直线的方程;

2)若直线轴交于点,设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是平行四边形,的两个三等分点.

(1)求证平面

(2)若平面平面,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆.

(1)求证两圆相交;

(2)求两圆公共弦所在直线的方程;

(3)求过两圆的交点且圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,已知四棱锥的底面为菱形,且 .

I)求证:平面 平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

50

已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.

(1)请将上面的列联表补充完整;

(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)

A.B.C.D.

查看答案和解析>>

同步练习册答案