分析 根据极坐标方程,参数方程与普通方程的关系求出曲线的普通方程,利用点到hi直线的距离公式进行求解即可.
解答 解:由$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m得$\sqrt{2}$ρsinθcos$\frac{π}{4}$-$\sqrt{2}$ρcosθsin$\frac{π}{4}$=m,
即x-y+m=0,
即直线l的直角坐标方程为x-y+m=0,
圆C的普通方程为(x-1)2+(y+2)2=9,
圆心C到直线l的距离$\frac{|1-(-2)+m|}{{\sqrt{2}}}=\sqrt{2}$,
解得m=-1或m=-5.
点评 本题主要考查参数方程,极坐标方程与普通方程的关系,结合点到直线的距离公式解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com