12£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚ¼«
×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©£®
£¨¢ñ£©½«Ô²CµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬µãPµÄ×ø±êΪ£¨2£¬0£©£¬ÊÔÇó$\frac{1}{|PA|}$+$\frac{1}{|PB|}$µÄÖµ£®

·ÖÎö £¨I£©Ô²CµÄ¼«×ø±ê·½³Ì¦Ñ=4cos¦È-4sin¦È£¬»¯Îª¦Ñ2=4¦Ñcos¦È-4¦Ñsin¦È£®ÀûÓà $\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²µÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃt${\;}^{2}+2\sqrt{2}t-4=0$£¬¿ÉµÃ¸ùÓëϵÊýµÄ¹Øϵ£¬¿ÉµÃ$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}=\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$£¬¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨¢ñ£©ÓɦÑ=4$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©µÃ£¬¦Ñ=4cos¦È-4sin¦È£¬
ËùÒÔ¦Ñ2=4¦Ñcos¦È-4¦Ñsin¦È£¬
¡àx2+y2=4x-4y£¬
¼´Ô²CµÄÖ±½Ç×ø±êϵ·½³ÌΪ£º£¨x-2£©2+£¨y+2£©2=8    ¢Ù
£¨¢ò£©ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$Óë¢ÙʽÁªÁ¢µÃ
t${\;}^{2}+2\sqrt{2}t-4=0$£¬
ËùÒÔt1+t2=-2$\sqrt{2}$£¬t1t2=-4£¼0£¬
¸ù¾Ý²ÎÊýtµÄÒâÒå¿ÉÖª£º$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}=\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{6}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏߵIJÎÊý·½³Ì¼°ÆäÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$£¬Ôò f¡ä£¨-3£©µÈÓÚ£¨¡¡¡¡£©
A£®4B£®$\frac{1}{9}$C£®$-\frac{1}{4}$D£®$-\frac{1}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ex-x-1£¬x¡ÊR£¬ÆäÖУ¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£®º¯Êýg£¨x£©=xsinx+cosx+1£¬x£¾0£®
£¨¢ñ£©Çóf£¨x£©µÄ×îСֵ£»
£¨¢ò£©½«g£¨x£©µÄÈ«²¿Áãµã°´ÕÕ´ÓСµ½´óµÄ˳ÐòÅųÉÊýÁÐ{an}£¬ÇóÖ¤£º
£¨1£©$\frac{£¨2n-1£©¦Ð}{2}$£¼an£¼$\frac{£¨2n+1£©¦Ð}{2}$£¬ÆäÖÐn¡ÊN*£»
£¨2£©ln£¨1+$\frac{1}{{{a}_{1}}^{2}}$£©+ln£¨1+$\frac{1}{{{a}_{2}}^{2}}$£©+ln£¨1+$\frac{1}{{{a}_{3}}^{2}}$£©+¡­+ln£¨1+$\frac{1}{{{a}_{n}}^{2}}$£©£¼$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¸ø³öÏÂÁÐÎåËĸöÃüÌ⣺
¢ÙÈôÖ±Ïßl1£ºa2x-y+6=0ÓëÖ±Ïßl2£º4x-£¨a-3£©y+9=0»¥Ïà´¹Ö±£¬Ôòa=-1£»
¢ÚÔ²C1£ºx2+y2+2x=0ÓëÔ²C2£ºx2+y2+2y-1=0Ç¡ÓÐÁ½Ìõ¹«ÇÐÏߣ»
¢ÛÒÑÖªF1£¬F2ÊÇÍÖÔ²$\frac{x^2}{16}+\frac{y^2}{9}$=1µÄ×óÓÒ½¹µã£¬PΪÍÖÔ²ÉÏÒ»µã£¬ÇÒ|PF1|=3£¬Ôò|PF2|=1£»
¢ÜË«ÇúÏß$\frac{y^2}{9}-\frac{x^2}{16}$=1µÄ¶¥µãµ½½¥½üÏߵľàÀëΪ$\frac{12}{5}$£»
¢ÝÒÑÖª¹ýµãP£¨2£¬0£©µÄÖ±ÏßÓëÅ×ÎïÏßy2=8x½»ÓÚA¡¢BÁ½µã£¬OΪ×ø±êÔ­µã£¬Ôò$\overrightarrow{OA}•\overrightarrow{OB}$=-12£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢڢܢݣ¨°ÑÄãÈÏΪÕýÈ·µÄÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®PΪÍÖÔ²$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1ÉÏÈÎÒâÒ»µã£¬EFΪԲN£º£¨x-1£©2+y2=4µÄÈÎÒâÒ»ÌõÖ±¾¶£¬Ôò$\overrightarrow{PE}$•$\overrightarrow{PF}$µÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬15]B£®[5£¬15]C£®[5£¬21]D£®£¨5£¬21£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èôº¯Êýf£¨x£©=$\frac{1}{n}{e^{mx}}$£¨m£¬n¡ÊR+£©µÄͼÏóÔÚx=0´¦µÄÇÐÏßlÓëÔ²C£ºx2+y2=1ÏàÇУ¬Ôòm+nµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®$\sqrt{2}$D£®$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ÔÚËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDÊÇƽÐÐËıßÐΣ¬µãE£¬FΪPA£¬PDµÄÖе㣬ÔòÃæBCFE½«ËÄÀâ׶P-ABCDËù·Ö³ÉµÄÉÏÏÂÁ½²¿·ÖµÄÌå»ýµÄ±ÈֵΪ$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®²»µÈʽ|x-1|-|x+2|¡Ýa2-3a-1ºã³ÉÁ¢£¬ÔòʵÊýaµÄ·¶Î§Îª[1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ¡÷ABCÖУ¬AB=AC=5£¬BC=6£¬OÊÇ¡÷ABCµÄÄÚÐÄ£¬Èô$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$£¬Ôòx+y=$\frac{5}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸