精英家教网 > 高中数学 > 题目详情

【题目】是素数,证明存在0,1,2,…,的一个排列(,…,),使得,…,.被除的余数各不相同.

【答案】见解析

【解析】

是素数,由孙子定理,对每个,存在,使得

有解.

,并用表示除的余数,

.

(1)首先证明,且时,.

这是因为

.

(2)其次证明.

否则,若,则

时,由于,有.

从而,有

. (2)

从(2),至少有一个,满足,即. (3)

如果(3)取等号,则由(2)可知,对于不但模长皆为2,而且辐角都应相等.又利用(2)可知,则,这里,.再利用(1)可以看到次多项式时均为0,从而这多项式恒等于0.那么,

. (4)

由于从而可以知道,…,是一次方根.

综上所述,.

最大值中的最小值达到时,在复平面上,复数,…,所对应的点是一个单位圆的内接正边形的个顶点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国有一道古典数学名著——两鼠穿墙:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”题意是:“有两只老鼠从墙的两边打洞穿墙(连线与墙面垂直),大老鼠第一天进一尺,以后每天加倍,小老鼠第一天也进一尺,以后每天减半,那么两鼠第几天能见面.”假设墙厚16尺,如图是源于该题思想的一个程序框图,则输出的( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为2的正沿着高折起,使,若折起后四点都在球的表面上,则球的表面积为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线ly=x+4,动圆⊙Ox2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点AB在直线l上,顶点CD在⊙O.r变化时,求菱形ABCD的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在时钟的表盘上作9的扇形,每一个都覆盖4个数字,每两个覆盖的数字不全相同.求证:一定可以找到3个扇形,恰好覆盖整个表盘.举一个反例说明,作8个扇形将不具有上述性质.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以千米小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求时,每小时的油耗(所需要的汽油量)为升,其中为常数,且

1)若汽车以120千米小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求的取值范围;

2)求该汽车行驶100千米的油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=ax+1和抛物线y2=4x相交于不同的AB两点.

)若a=-2,求弦长|AB|

)若以AB为直径的圆经过原点O,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,…,是一个数列对每个.如果两数不同如果两数相同.于是得到一个新数列,…,其中.重复上述方法得到一个由01两个数字组成的三角形数表最后一行仅一个数字求这张数字表中1的和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市电视台为了宣传举办问答活动,随机对该市1565岁的人群抽样了人,回答问题统计结果如图表所示.

组号

分组

回答正确
的人数

回答正确的人数
占本组的概率

1


5

0.5

2



0.9

3


27


4



0.36

5


3


(Ⅰ) 分别求出的值;

(Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?

(Ⅲ) (Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

同步练习册答案