精英家教网 > 高中数学 > 题目详情
用数学归纳法证明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
对一切自然数n都成立.
分析:要证明等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
对一切自然数n都成立,则我们要先证明n=1时成立,再假设n=k时成立,进而n=k+1时等式也成立.
解答:解:①当n=1时,cos
x
2
=
sinx
2 sin
x
2 

②假设当n=k时,等式成立,即cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2k
=
sinx
2ksin
x
2k

则当n=k+1时,
cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2k
•cos
x
2k+1

=
sinx
2ksin
x
2k
cos
x
2k+1

=
sinx
2k•2•sin
x
2k+1
cos
x
2k+1
cos
x
2k+1
=
sinx
2nsin
x
2k+1

即此时等式也成立,
故等式cos
x
2
•cos
x
22
•cos
x
23
•…cos
x
2n
=
sinx
2nsin
x
2n
对一切自然数n都成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明等式1+2+3+…+(n+3)=
(n+3)(n+4)
2
(n∈N*)
时,第一步验证n=1时,左边应取的项是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,当n=1左边所得的项是1+2+3;从“k→k+1”需增添的项是
(2k+2)+(2k+3)
(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区一模)用数学归纳法证明等式:1+a+a2+…+an+1=
1-an+21-a
(a≠1,n∈N*),验证n=1时,等式左边=
1+a+a2
1+a+a2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式  
1
n+1
+
1
n+2
+…+
1
3n+1
>1(n≥2)
的过程中,由n=k递推到n=k+1时不等式左边(  )

查看答案和解析>>

同步练习册答案